首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrical arc machining has shown its remarkable efficiency in processing difficult-to-cut materials, especially high-temperature alloys and metal-based composites. Despite several studies about the material removal mechanisms of the electrical arc machining of metal alloys, few of these reports relate to the mechanism of machining composites with electrical arcing. Considering that reinforcements such as SiC particles have different thermal and electrical properties with metal alloys, research on the influence of SiC reinforcement on the electrical arc machining process is important and necessary. Based on comparison experiments using 20 and 50 vol.% SiC/Al composites, this research focused on the influence of SiC particles on the machining performance and material removal mechanism of blasting erosion arc machining (BEAM), and further analyzed the influence of reinforcements on composite material removal mechanisms. Analysis revealed that the molten material expelling mechanism is also influenced by the SiC fraction difference. For the BEAM of lower SiC fraction composites, both the SiC particles and the molten aluminum are mainly pumped and ejected by the flushing dielectric. In greater SiC fraction composites, most SiC particles are directly sublimed by heat. In addition, the mechanism of BEAM in the material removal and tool wear of SiC/Al composites was discussed based on heat transfer simulation and observation. Furthermore, the results disclosed that many chemical reactions take place during machining that have an obvious influence on the tool wear rate.  相似文献   

2.
冉娜  谢娥  李坤  钟干  黎阳 《现代机械》2012,(2):84-85,94
利用粉末冶金法制备出了SiC颗粒增强铝基复合材料(SiCp/Al),研究了SiC颗粒添加量对复合材料布氏硬度、抗拉强度及显微结构的影响。结果表明:SiC颗粒在基体材料中分布均匀,界面清晰;SiCp/Al复合材料的硬度与抗拉强度随SiC颗粒含量的增加先升高后降低,在SiC颗粒添加量为7 Wt%时,硬度与抗拉强度达到最大值,分别为89.4HBS与311MPa。  相似文献   

3.
Tribocorrosion behaviour of heat-treated NiP and NiP–SiC composite coatings was investigated in a 0.6 M NaCl solution. The tribocorrosion tests were performed in a linear sliding tribometer with an electrochemical cell interface. It was analyzed the influence of SiC particles dispersion in the NiP matrix on current density developed, on coefficient of friction and on wear volume loss. The results showed that NiP–SiC composite coatings had a lower wear volume loss compared to NiP coatings. However, the incorporation of SiC particles into the metallic matrix affects the current density developed by the system during the tribocorrosion test. It was verified that not only the volume of co-deposited particles (SiC vol.%) but also the number of SiC particles per coating area unit (and consequently the SiC particles size) have made influence on the tribocorrosion behaviour of NiP–SiC composite coatings.  相似文献   

4.
This study deals with material flow behaviour during the extrusion process of a metal-matrix composite (MMC), and the effects of this behaviour on the damage to die flat surfaces. AA 6063 aluminium matrix composite billets reinforced with SiC particles (167 μm) were prepared using the stir-casting method for extrusion. Extrusion of the MMC billets were conducted at 500 °C with a ram speed of 2 mm s−1 and an extrusion ratio of 25:1 under laboratory conditions. The extrusion die with two different channel profiles was manufactured from AISI H13 steel that was hardened, tempered and grounded. The flow patterns of the deformed billet during the MMC extrusion determine the positions of the SiC particles in the deformation zone. While some of the SiC particles flow within the deformed material, some flow at the deformed billet surface; these SiC particles play the most important role in the damage mechanism of the die-bearing surface and the geometry of the dead metal zone (DMZ). The possible damage to the die-bearing surfaces is severe at the entrance of the die bearing. On the other hand, some SiC particles are broken in this zone due to the severe deformation stress of the MMC billet.  相似文献   

5.
The aim of this study was to investigate the effect of SiC particle size on the wear properties of magnesium-based hybrid metal matrix composites (MMCs) reinforced with Saffil short fibers and SiC particles. Hybrid MMCs with different SiC particle sizes of 1, 7, and 20 μm, respectively, were fabricated by the squeeze infiltration process. The volume fractions of Saffil short fibers and SiC particles in the hybrid composites were 15 and 5%, respectively. Wear tests were carried out using a ball-on-disk against a steel ball under the dry sliding condition. The test results showed that the composite with large-sized SiC particles had an improved wear resistance compared with the smaller sized particles.  相似文献   

6.
Aluminum alloy matrix composites reinforced with SiC particles (AMC) are potential materials applicable to weight reduction of friction materials. We developed two AMC: A356/SiC and A390/SiC. 30 ??m and 60 ??m SiC particles with volume fraction of 20% were dispersed in the matrix of A356 and A390 alloys. When the temperature of the liquid alloy was higher than that of the melting point, SIC particles floated up to the surface because of the low viscosity, high surface tension and interfacial energy. To mix the ceramic particles, the aluminum alloy was in the mushy state near the solidus temperature, 610°C for A356 and 645°C for A390. Metallurgical, mechanical and tribological characteristics of the manufactured composites were evaluated.  相似文献   

7.
以钼、硅、碳粉末为原料,采用湿法混合和原位反应热压一次复合工艺制备了MoSi2以及含不同体积分数原位SiC颗粒的SiCP/MoSi2复合材料,并研究了原位SiC颗粒对该材料室温断裂韧度的影响.结果表明:复合后的SiCP/MoSi2室温断裂韧度大幅度提高,原位SiC颗粒可以细化MoSi2基体晶粒,减少和消除脆性的SiO2玻璃相,并阻碍SiCP/MoSi2复合材料断裂时的裂纹扩展而造成裂纹的偏转和桥接.  相似文献   

8.
采用粉末冶金法制备了AZ91镁合金和SiC颗粒增强的镁基复合材料,SiC的粒度分别为18 μm和8μm,经热压烧结后制得试样.通过扫描电子显微镜观察分析基体和增强体的微观组织形貌,并将制备出的材料分别放入MMW-1型摩擦磨损试验机上,研究SiC的粒度对镁基复合材料摩擦磨损性能的影响.实验结果表明:SiC颗粒的加入能有效...  相似文献   

9.
铝合金表面Ni-SiC复合镀层的摩擦磨损性能   总被引:3,自引:0,他引:3  
通过复合电沉积技术,在铝合金表面得到了不同SiC粒子含量的Ni-SiC复合镀层,研究了在干摩擦和液态石蜡润滑摩擦条件下载荷与SiC粒子体积分数对Ni-SiC复合镀层摩擦磨损性能的影响。结果表明:无论在干摩擦或润滑摩擦条件下,加入SiC粒子后的复合镀层其耐磨性均优于纯镍镀层,并随载荷的提高耐磨性下降。在干摩擦条件下,镀层中的SiC粒子体积分数在5.8%时复合镀层耐磨性最好;在润滑摩擦条件下,随镀层中SiC粒子体积分数提高,复合镀层耐磨性均提高。  相似文献   

10.
The microstructure of a 2024 type aluminium alloy, reinforced with 13 vol.% SiC particles, and made by a spray technique, has been investigated by transmission electron microscopy and X-ray microanalysis in the as-extruded and T6 conditions. High resolution electron microscopy studies and energy-dispersive X-ray spectrometry microanalysis were performed on the interfaces between the SiC particles and the metal matrix. The interfaces were found to be abrupt: some exhibit an amorphous layer, rich in oxygen; in many others, silver-rich crystallites have grown coherently on the SiC particles.  相似文献   

11.
The spiral polishing mechanism employed a fast turning screw rod to drive the abrasive for workpiece surface polishing. In this study, the powerful ring magnet installed around the workpiece would attract the self-developed magnetic hot melt adhesive particles (MHMA particles) during the process of polishing, driving the SiC particles against the workpiece, the inner wall of the bore. At the same time, the flexibility of MHMA particles helped improve the surface quality of the bore by preventing the SiC particles from heavily scratching it. The effects of magnetic flux density, size and concentration of SiC particles, concentration of MHMA particles, viscosity of silicone oil, revolution speed of the spindle as well as machining time and machining gap on operation temperature, slurry viscosity, surface roughness, and material removal were discussed and the best parameter combination was identified based on the results of the experiment. The effects of each machining parameter on the finished surface topography of the workpiece were also examined. Both analysis of variance and F-test indicated that magnetic flux density and the concentration of MHMA particles were the two most important variables affecting the surface roughness. In other words, magnetic force helped improve spiral polishing. Furthermore, the results showed that adding new MHMA particles to the slurry greatly improved the surface quality, at a rate of 90 %, and reduced the workpiece surface roughness from 0.9 μm down to 0.094 μm.  相似文献   

12.
Si_3N_4/SiC(N)纳米复相陶瓷的制备与性能研究   总被引:2,自引:0,他引:2  
采用极性分散剂和超声分散技术 ,在微米Si3 N4基体中加入SiC纳米颗粒 ,用真空热压烧结法制备出Si3 N4/SiC(N)纳米复相陶瓷。研究结果表明 :加入SiC纳米颗粒可显著降低烧结温度 ,阻止 β Si3 N4晶粒的过度生长 ,细化晶粒组织 ,提高复合陶瓷材料的致密度和机械性能 ;含 15wt%SiC纳米颗粒的复相陶瓷具有最佳断裂韧度和较高抗弯强度 ,可作为高速切削刀具和模具的候选材料。  相似文献   

13.
《Wear》2006,260(9-10):1070-1075
Wear resistance of unalloyed ductile iron (Dl) can be enhanced either by heat treatment or by deposition of hard coating. The electrodeposition of Ni–SiC composite on unalloyed Dl (GGG 40) has been applied. The effect of operating conditions including current density and SiC content in the plating solution on the SiC incorporation in the deposited layer were studied. It was found that the volume percent of SiC particles in the composite layer increases with increasing current density and SiC content in the bath. The maximum SiC incorporation could be attained at optimum conditions; 60 g/1 of SiC particles in suspension, 5 A/dm2, pH 5 and 50 °C. Also the results reveal that the particle inclusion in the coating layer depends mainly on the treatment process (activation with PdCI2). The mechanical properties of the composite such as hardness and wear resistance were examined comparing with the uncoated substrate. The reinforced particles incorporated with Ni-matrix improve the hardness and wear resistance of coated Dl comparing with uncoated substrate.  相似文献   

14.
采用真空热压粉末冶金烧结工艺制备了含SiC颗粒体积分数分别为 5 %、15 %和 2 5 %的SiC颗粒增强铝基复合材料 ,结合其力学性能、扫描电镜和界面微区能谱分析结果 ,分析了SiC/Al复合材料的真空烧结过程中的界面现象 ,以及材料增强和断裂机理。结果表明 ,真空烧结过程中出现了界面反应 ,改善了界面结合强度 ,断裂破坏主要在基体上进行。随着SiC粒子体积分数的增加 ,SiCp/Al复合材料的抗拉强度增加 ,弹性模量显著增加 ,延伸率降低 ,材料脆性增加。  相似文献   

15.
为抑制激光直接成形Al2O3陶瓷过程中的裂纹,利用SiC未熔颗粒的增韧原理,在Ti-6Al-4V合金基底上进行添加SiC颗粒的Al2O3同轴送粉激光直接成形实验,分析了激光直接成形Al2O3+ SiC复相陶瓷的可行性以及成形件裂纹敏感性的影响因素.利用光学显微镜观察薄壁成形试样的裂纹扩展、显微组织和两相结合情况,并使用X射线衍射仪(XRD)进行相分析.结果表明:SiC颗粒可在激光直接成形Al2O3+SiC陶瓷中起到抑制裂纹的作用,并可形成各成分结合良好,无明显化学反应,含有较完整SiC未熔颗粒的复相陶瓷材料.单因素实验显示:SiC比例f、激光功率P、扫描速度v和送粉率n对裂纹敏感性均有显著影响,最后采用工艺参数:f =10%(重量百分比)、P=186 W、v=300 mm/min及n=1.78 g/min成形了裂纹敏感性低,无明显缺陷的长×高×厚约为17 mm×6 mm×2 mm的薄壁件.  相似文献   

16.
A. Ureña  J. Rams  M. Campo  M. Sánchez 《Wear》2009,266(11-12):1128-1136
Dry sliding wear of an AA 6061 alloy reinforced with both modified SiC particles and metal coated carbon fibres has been studied. SiC particles were used to increase the hardness of the composite while short carbon fibres are supposed to act as a solid lubricant. SiC particles were coated with a silica layer deposited through a sol–gel procedure to increase the processability of the composite and to enhance the particle–matrix interfacial resistance. The metallic coatings on carbon fibres were made of copper or nickel phosphorus which was deposited through an electroless process. The metallic coatings favoured the wetting of the fibres during processing and then dissolved in the aluminium matrix forming intermetallic compounds that increased its hardness. Wear behaviour of AA 6061–20%SiC and AA 6061–20%SiC–2%C was compared with that of the composites with the same reinforcement content but using coated particles and fibres. The influence that the modification of the matrix because of the incorporation of coatings on the reinforcements had on the mild wear behaviour was investigated. The wear resistance of the composites increased when carbon fibres were added as secondary reinforcement and when coated reinforcements were used.  相似文献   

17.
采用电铸技术(氨基磺酸镍电铸液)成功制备了SiC颗粒增强镍基复合材料;用Leica Qwin图形分析软件和显微硬度计分析了电铸工艺参数对SiC颗粒增强镍基复合材料中SiC颗粒含量以及SiC含量对该复合材料显微硬度的影响;用场发射扫描电镜分析了复合材料的截面形貌和SiC分布.结果表明:在SiC加入量50 g·L-1、电流密度3 A·dm-2和磁力搅拌强度1.5次/min条件下,复合材料中SiC颗粒体积分数达到最高值27%,其显微硬度值也最高,为710 HV.  相似文献   

18.
An investigation was conducted to study: (1) the mechanism of liquid-phase pulse-impact diffusion welding (LPPIDW); and (2) the influence of pulse-impact on the microstructure and tensile strength of LPPIDW-welded joints of the aluminum matrix composite (AMC) SiCp/A356. The results showed that, during LPPIDW: (1) the interface state between the SiC particles and matrix was prominently affected by the pulse-impact; (2) the initial pernicious contact-state of reinforcement particles was changed from reinforcement (SiC)/reinforcement (SiC) to reinforcement (SiC)/matrix/reinforcement (SiC); (3) the harmful microstructure/brittle phase of Al4C3 was restrained from the welded joint; (4) the density of dislocation in the matrix neighboring to and away from the interface in the matrix was higher than its parent composite; and (5) the intensively mutual entwisting of dislocation was taking place. Studies illustrated that: (1) deformation mainly occurred in the matrix grain; and (2) in the deformation of rapid thermal pressing, the matrices around SiC particles engendered intensive aberration and offered a high-density nucleus area for matrix crystals, which was in favor of forming nano-grains and improved the properties of the successfully welded composite joints. Such distinctly welded composite joints gave: (1) a tensile strength of up to 179 MPa, which was about 74.6% of the stir-cast SiCp/A356; and (2) a corresponding radial deformation of below 3%, which conformed well to the deformation specification of the welded specimens.  相似文献   

19.
SOLIDIFICATIONPROCESSINGANDFRACTUREMORPHOLOGYOFSiCp/ZL108COMPOSITE①ZhaoYutaoJiangsuUniversityofScienceandTechnologyAbstractTh...  相似文献   

20.
The application of a surface coating on SiC particles is studied as an alternative means of solving problems of reactivity between SiC reinforcements and molten aluminium and problems of low wetting which limit the application of casting routes for fabrication of Al–SiCp composites. The selected active barrier was a ceramic composed of SiO2, which was generated by controlled oxidation of the SiC particles. The coating behaves as an active barrier, preventing a direct reaction between molten aluminium and SiC to form Al4C3 as the main degradation product. At the same time, the SiO2 provokes other interfacial reactions, which are responsible for an improvement in wetting behaviour.
Composites were prepared by mixing and compacting SiC particles with Al powders followed by melting in a vacuum furnace, and varying the residence time. Transmission electron microscopy (TEM), high resolution electron microscopy (HREM) and field emission TEM were employed as the main characterization techniques to study the interfacial reactions occurring between the barrier and the molten aluminium. These studies showed that the SiO2 coating behaves as an active barrier which reacts with the molten Al to form a glassy phase Al–Si–O. This compound underwent partial crystallization during the composite manufacture to form mullite. The formation of an outer crystalline layer, composed mainly of Al2O3, was also detected. Participation of other secondary interface reactions inside the active barrier was also identified by HREM techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号