首页 | 官方网站   微博 | 高级检索  
     


Mechanism and influence of pulse-impact on the properties of liquid-phase pulse-impact diffusion welded SiCp/A356
Authors:Wei Guo  Meng Hua  John Kin Lim Ho  Hang Wai Law
Affiliation:1. Department of Manufacturing Engineering and Engineering Management, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong
Abstract:An investigation was conducted to study: (1) the mechanism of liquid-phase pulse-impact diffusion welding (LPPIDW); and (2) the influence of pulse-impact on the microstructure and tensile strength of LPPIDW-welded joints of the aluminum matrix composite (AMC) SiCp/A356. The results showed that, during LPPIDW: (1) the interface state between the SiC particles and matrix was prominently affected by the pulse-impact; (2) the initial pernicious contact-state of reinforcement particles was changed from reinforcement (SiC)/reinforcement (SiC) to reinforcement (SiC)/matrix/reinforcement (SiC); (3) the harmful microstructure/brittle phase of Al4C3 was restrained from the welded joint; (4) the density of dislocation in the matrix neighboring to and away from the interface in the matrix was higher than its parent composite; and (5) the intensively mutual entwisting of dislocation was taking place. Studies illustrated that: (1) deformation mainly occurred in the matrix grain; and (2) in the deformation of rapid thermal pressing, the matrices around SiC particles engendered intensive aberration and offered a high-density nucleus area for matrix crystals, which was in favor of forming nano-grains and improved the properties of the successfully welded composite joints. Such distinctly welded composite joints gave: (1) a tensile strength of up to 179 MPa, which was about 74.6% of the stir-cast SiCp/A356; and (2) a corresponding radial deformation of below 3%, which conformed well to the deformation specification of the welded specimens.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号