首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
针对高温、三维复合运动(往复+旋转)耦合作用下冲击螺杆钻具传动轴总成密封失效问题,设计氢化丁腈橡胶热老化试验,基于热老化试验数据建立热老化效应冲击螺杆钻具传动轴总成O形密封圈三维有限元模型,采用有限元方法研究流体压力、温度、摩擦因数和往复速度对传动轴总成O形密封圈静密封及动密封性能的影响。结果表明:静密封状态下高应力区位于O形密封圈右侧,高接触压力区位于O形密封圈内接触面、外接触面和侧面,最大von Mises应力和最大接触压力随着流体压力和温度的增大而增大,最大接触压力整体上随着摩擦因数的增大而减小;动密封状态下最大von Mises应力和最大接触压力在往复速度为0.4 m/s和摩擦因数为0.25出现异常规律,最大von Mises应力和最大接触压力随着流体压力和温度的增大而增大。由此建议密封圈在静密封和动密封状态,在往复速度小于0.4 m/s和较小摩擦因数下运行。  相似文献   

2.
利用ANSYS建立T形滑环组合密封的二维轴对称有限元模型,将密封结构划分为4个密封区域,研究静、动密封状态下介质压力、密封间隙、摩擦因数和T形滑环斜边与垂直线之间的角度,对组合密封圈密封性能的影响。仿真结果表明,T形滑环组合密封可以满足研究的压力范围下的静、动密封要求。其最大Von Mises应力和最大接触应力随介质压力增大而增大,随密封间隙增大而减小;最大Von Mises应力和最大接触应力随滑环斜边与垂直线之间角度增大而增大,当角度为2.5°~7.5°时,组合密封可达到密封要求且滑环不易磨损;摩擦因数越小,组合密封动密封性能越好。  相似文献   

3.
研究原油高温热采工具 O 形橡胶密封圈在高温高压下的密封特性。借助于大型有限元分析软件 ANSYS,建立 O 形橡胶密封圈及其边界的二维轴对称有限元模型,研究油压、装配间隙和摩擦因数对密封面最大接触应力、剪切应力和 Von Mises 应力的影响,并采用热应力耦合分析方法,分析温度对 O 形密封圈密封性能的影响。结果表明:摩擦因数对应力影响不大,而油压和装配间隙对应力影响很大,过大的装配间隙会造成 O 形橡胶密封圈最大接触应力下降和最大剪切应力上升,造成密封失效;当温度升高时,密封圈最大剪切应力和接触应力相应减小,而最大 Von Mises 应力明显减小,因此应使 O 形密封圈在适当的温度下工作,以确保密封的可靠性。  相似文献   

4.
往复密封中星型密封圈的密封性能分析   总被引:5,自引:0,他引:5  
建立星型密封圈和O型密封圈的有限元模型,分析它们在静密封和往复动密封中的密封性能,并对影响星型密封圈往复密封特性的流体工作压力、往复运动速度、预压缩量和摩擦因数进行分析.结果表明,在静密封中,星型密封圈的密封性能比O型圈好,但其内应力较大,容易发生失效;在往复动密封中,密封圈的密封性能随时间呈现波动变化,星型圈比O型圈更适宜用于动密封中;星型圈在内行程中的密封性优于外行程,但其随时间波动较大;星型圈的最大接触应力并不与工作压力和运动速度呈线性关系,预压缩量和摩擦因数对星型圈内行程中的密封性能影响较小,而对其外行程影响较大.  相似文献   

5.
以旋塞阀柱面O形橡胶密封圈为对象进行受力分析;利用ABAQUS软件实现阀芯旋转运动的三维非线性接触动力学仿真,分析了密封圈硬度、摩擦因数及阀芯旋转速度等因素对柱面密封圈最大接触压力和Von Mises应力状况的影响。结果表明:柱面O形密封圈的左右两端是最大应力发生的主要部位;密封圈硬度值和摩擦因数是影响密封性能的重要因素;阀芯旋转速度在一定范围内运行时,对密封性能影响较小。  相似文献   

6.
建立了O形密封圈及其改进结构后的四种密封圈的有限元模型,通过ABAQUS软件分析了四种密封圈的Von Mises应力和接触应力,研究了工作压力、预压缩量、摩擦系数和密封圈直径对四种密封圈的密封性能影响。通过分析发现,密封圈截面形状的变化对其Von Mises应力和接触应力的大小及分布影响较大;预压缩量和摩擦系数对密封圈Von Mises应力和接触应力的影响呈现非线性变化;密封圈的接触应力与工作压力近似呈线性关系变化;密封圈的直径对其密封性能影响较小,但对使用寿命影响较大。  相似文献   

7.
运用有限元理论与ABAQUS分析计算软件,建立某乘用车发动机气缸盖螺栓密封圈与缸体装配体的有限元计算模型,计算密封圈在装配状态下的最大接触压力和Von Mises应力,并采用静态面压试验进行验证。结果表明,该密封圈满足密封性与强度设计要求,具有足够的安全裕度;仿真分析结果与试验结果吻合较好,验证了有限元分析方法的合理性。分析密封圈与缸体的摩擦因数与密封介质压力对密封性能的影响。结果表明,密封圈与缸体的摩擦因数对密封性能影响较小;接触面上的最大接触压力随着密封介质压力的增大而增大,密封性能随之增强。  相似文献   

8.
为研究C形滑环式组合密封的密封性能,运用Abaqus建立其二维轴对称有限元模型,研究工作压力、密封间隙、往复运动速度和摩擦因数对密封性能的影响。仿真结果表明,静密封工作时,O形圈与C形滑环之间的最大接触应力是密封的关键;随着工作压力的增大,O形密封圈和C形滑环的最大Von Mises以及二者之间的最大接触应力均呈现出增大趋势;密封间隙越小,接触应力越大。动密封工作时,密封间隙和工作压力对滑动密封的变化趋势与静密封时基本一致;C形滑环与活塞杆之间的摩擦因数越小,密封效果越好;往复运动速度对最大接触应力的影响不大。  相似文献   

9.
基于正交试验法,利用ANSYS软件建立带挡圈X形密封圈的二维轴对称几何模型,分析沟槽结构、挡圈结构、安装状态和操作工况等参数对密封圈静密封性能和可靠性的影响;以最大Von Mises应力值最小为优化目标,对X形密封圈结构进行优化。结果表明:沟槽口和沟槽底的倒角尺寸过大或过小均会使密封圈产生应力集中;最大Von Mises应力随挡圈倒角尺寸和挡圈宽度的增大均先增大后减小,随着密封间隙的增大而快速增大;增大密封圈压缩率有利于提高主密封面上的接触压力,但会引起最大Von Mises应力增加;增大密封圈拉伸率有利于减小最大Von Mises应力,但X形圈安装变得困难;在高压(流体压力大于10 MPa)条件下,操作工况、安装状态参数和挡圈结构参数依次为影响密封圈密封性和可靠性的主要因素,是密封圈结构优化设计需重点研究的对象。  相似文献   

10.
采用ANSYS有限元软件对聚氨酯和丁腈橡胶组成的鼓型密封圈进行数值模拟,研究密封圈材料摩擦因数对鼓型组合密封圈及其密封性能的影响,得到不同工况下鼓型组合密封圈的Von Mises应力、剪切应力和接触应力分布。结果表明:在给定的正常工作条件下鼓型密封圈可以保证良好的密封;密封圈材料摩擦因数的大小对动密封影响较大,较大的摩擦因数会使密封面磨损加快,鼓型密封圈最优的摩擦因数为0.1左右。  相似文献   

11.
以轴用动密封Yx形密封圈为研究对象,运用有限元法建立二维轴对称模型,分析其在往复单向动密封中的密封性能,并对其不同工况下的力学性能进行研究。结果发现:动密封中Yx形密封圈主接触面最大接触应力、内部Von Mises应力的大小随时间而波动变化,且其作用位置随往复运动方向的改变而变化;主接触面平均摩擦力与介质压力、摩擦因数和密封间隙成线性关系,且几乎不因速度而变化,但最大摩擦力在各影响因素下却表现出了非线性特征;0.05~0.35 m/s范围内,速度对剪切应力影响较小;介质压力、摩擦因数、密封间隙对内行程的剪切应力影响较大;外行程在密封圈的失效过程中起主要作用;密封圈与轴接触的表面、内唇唇口、沟槽以及根部为易破坏的部位。仿真结果与实际失效特征吻合。  相似文献   

12.
陈波  杨晓  涂庆 《润滑与密封》2019,44(3):92-98
采用ABAQUS软件建立帽形滑环式组合密封有限元模型,研究不同工作压力、密封间隙、运动速度和摩擦因数对其密封性能的影响规律。研究结果表明:静密封工况下,活塞杆与O形圈间的最大接触应力是影响密封性能的关键因素,随着工作压力的增大或密封间隙的减小,O形圈与帽形滑环的最大Von Mises应力均逐渐增大,各表面间的接触应力也逐渐上升;动密封工况下,工作压力越大、密封间隙越小,接触应力越大,密封间隙为0.3 mm其动密封性能最优,而随摩擦因数的增大,接触应力总体呈上升趋势,运动速度则对于接触应力基本无影响。  相似文献   

13.
液压式配气系统O型密封圈动密封特性分析   总被引:3,自引:0,他引:3  
利用ABAQUS软件建立活塞运动速度为4 m/s、介质压力为6 MPa、摩擦因数为0.3的液压式配气系统O型密封圈有限元分析模型,分析不同往复运动速度、预压缩率、介质压力对液压式配气系统O型密封圈动密封特性的影响。结果表明:O型密封圈密封面的接触压力随位移的变化而产生波动,接触压力随介质压力、预压缩率的增大呈线性增大,运动速度对接触压力影响不大,接触压力曲线波动幅度随运动速度、介质压力、预压缩率的增大而增大;O型密封圈与油缸之间接触面的动密封性能优于O型密封圈与活塞之间接触面;O型密封圈在推程时的动密封性能优于回程;预压缩率小于10%时,O型密封圈不能满足该液压式配气系统的动密封要求,要确保O型密封圈的密封性,需要选择合理的预压缩率。  相似文献   

14.
为研究往复密封轴用Y形密封圈在静、动密封工作时的密封性能,利用有限元软件ABAQUS建立了Y形密封圈二维轴对称有限元模型,讨论了工作压力、密封间隙、往复运动速度、摩擦系数对其密封性能的影响。结果表明:静密封工作时,Y形密封圈内部应力基本呈对称分布;动密封工作时,Y形密封圈内唇侧应力明显大于外唇侧应力,外行程应力变化波动幅度大于内行程相应应力变化波动幅度,外行程更易引起密封圈失效;Y形密封圈根部、上端开口处、内唇唇口、密封圈与活塞轴接触区域较易发生失效;Y形密封圈最大接触应力均大于相应工作压力,具有较好的密封性能;往复运动速度对最大Von Mises应力影响较小;工作压力、密封间隙、摩擦系数对最大剪切应力影响较大。  相似文献   

15.
以仿真转台液压马达密封结构为研究对象,利用有限元分析软件ABAQUS建立其有限元模型,采用罚函数技术和库仑摩擦模型对O形密封圈和马达密封副间的摩擦接触进行有限元分析,研究O形密封圈材料硬度对接触压力、密封圈Mises应力和密封圈与马达密封副间接触面积的影响,分析接触压力、密封圈Mises应力峰值和接触面积的分布规律。结果表明:接触压力随O形密封圈材料硬度的变化呈“驼峰”式变化;在“驼峰”位置随材料硬度的增加而增大;材料硬度小于85 HA时,对O形密封圈Mises应力的影响并不明显;材料硬度大于85 HA时,Mises应力增大幅度变大,容易导致密封圈损坏;密封圈与马达轴间静接触面积整体上随密封圈材料硬度的增大而减小,故应尽量控制密封圈硬度,保证足够的接触面积。  相似文献   

16.
可调距桨在服役时,桨毂密封是通过O形密封圈实现,研究桨毂密封可控泄漏对于指导装配工艺设计和延长服役寿命非常重要。基于O形密封微观接触和泄漏通道模型,推导泄漏率公式,利用ABAQUS软件对可调距桨桨毂密封进行三维有限元仿真,分析不同参数对桨毂密封性能的影响规律,并给出相应工艺设计指导,并基于改进复合灰色关联度对参数影响程度进行排序。结果表明:粗糙度、压缩率、橡胶硬度和介质压力对密封性能均有影响,泄漏率随粗糙度的增加瞬间增大,随压缩率的增大而减小,随硬度的增大而增大,随介质压力的增加先增后减;硬度对最大Von Mises应力和接触压力影响最大,其次是压缩率,而介质压力对密封泄漏率的影响最大,粗糙度次之。通过实验验证模型和仿真结果的准确性,为可调距桨桨毂密封设计和安装提供了支撑。  相似文献   

17.
为了研究沟槽形状对O形橡胶密封圈密封性能的影响,利用有限元分析软件ANSYS对装配在燕尾沟槽中的O形橡胶密封圈进行建模,分析其在不同压缩率和介质压力下的变形与受力情况,获得对应的最大Von Mises应力、最大剪切应力、最大接触压力的分布情况,并与矩形槽的情况进行对比。结果表明:在不同压缩率和不同介质压力时,O形密封圈与燕尾沟槽配合使用时的最大Von Mises应力、最大接触压力均大于与矩形槽配合使用时,特别是在介质压力较高时,说明与燕尾沟槽配合使用时O形密封圈密封效果更好。  相似文献   

18.
建立齿形滑环密封系统的数值计算模型,采用有限元方法分析O形圈和滑环的接触压力和应力分布,并探讨初始压缩率、介质压力和滑环齿厚对齿形滑环密封圈密封性能的影响。结果表明:齿形滑环密封系统中O形圈的高应力区出现在靠近凹槽底部位置,而滑环的高应力主要集中在与轴筒和凹槽接触的2个尖角部位;增加初始压缩率可提高密封圈的密封性能,但密封圈的应力也逐渐增大;介质压力越大,密封圈的应力及密封面上的接触压力也随之增大;适当增加滑环齿厚可提高密封圈的密封性能及滑环抵御变形的能力。针对齿形滑环密封圈中滑环与凹槽接触的2个尖角处最易发生失效的问题,采用对其两尖角倒角的改进方案。结果表明:在相同工作条件下,改进后齿形滑环密封圈主密封面的最大接触压力提高,而且滑环和O形圈截面的最大Von Mises应力减小。因此,改进后的齿形滑环密封圈密封性能更好,使用寿命更长。  相似文献   

19.
采用有限元方法分析蒸压釜Y形橡胶密封圈在预安装、预压紧及工作状态下的变形与应力分布特性,结果表明蒸压釜密封槽密封腔的密封主要依靠Y形圈唇尖部位完成,同时该部位也最易损坏。分析蒸压釜Y形密封圈结构参数与密封圈应力变化之间规律,得到对Y形密封圈密封性能影响较大的结构参数,并通过正交试验方法对Y型密封圈进行结构优化。通过优化,在保证接触面可靠的接触压力的条件下降低了Von mises应力,且Von mises应力最大值位置由原来的密封唇尖转移到密封唇内侧,有效降低密封唇唇尖部位发生损坏的可能性;同时唇夹角的增大与Y形圈长度的减小可以达到节省材料的目的。因此,通过对Y形密封圈的优化达到了延长使用寿命、节省材料的目的。  相似文献   

20.
O形圈动密封特性的有限元分析   总被引:1,自引:0,他引:1  
利用软件ABAQUS建立了O形圈的轴对称有限元模型,分析了其在往复动密封中的密封性能,并对其不同工况下的力学性能进行了研究。结果表明:往复动密封中,O形圈主密封面最大接触应力与Von Mises应力的作用位置随运动方向的变化而改变,且大小随时间呈波动变化;速度小于0.25 m/s时,速度对摩擦力与剪切应力几乎无影响;随着摩擦系数、介质压力的增大,摩擦力与剪切应力对速度的敏感性变高;介质压力与摩擦系数对摩擦力与剪切应力影响较大,剪切应力与摩擦力呈同步变化;密封外行程Von Mises应力与剪切应力均大于内行程,更易引起疲劳与剪切破坏;预压缩率增加到一定值时,O形圈在动密封中所受的摩擦力急剧上升,动密封中预压缩率不宜过大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号