首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amorphous solid (vitreous) water can be obtained by a number of methods, including quick freezing of a very small volume of pure water, low pressure condensation of water vapour on a cold substrate or transformation of hexagonal ice (the ice which is naturally formed) under very high pressure at liquid nitrogen temperature. Larger volumes can be vitrified if cryoprotectant is added or when samples are frozen under high pressure. We show that a sample of 17.5% dextran solution or mouse brain tissue, respectively, frozen under high pressure (200 MPa) into cubic or hexagonal ice can be transformed into vitreous water by the very process of cryosectioning. The vitreous sections obtained by this procedure differ from cryosections obtained from vitreous samples by the irregular aspect of the sections and by small but significant differences in the electron diffraction patterns. For the growing community of cryo‐ultramicrotomists it is important to know that vitrification can occur at the knife edge. A vitreous sample is considered to show the best possible structural preservation. The sort of vitrification described here, however, can lead to bad structural preservation and is therefore considered to be a pitfall. Furthermore, we compare these sections with other forms of amorphous solid water and find it similar to high density amorphous water produced at very high pressures (about 1 GPa) from hexagonal ice and annealed close to its transformation temperature at 117 K.  相似文献   

2.
Freezing of bulk biological objects was investigated by X-ray cryodiffraction. Freezing at atmospheric pressure of most microscopic biological samples gives rise to large hexagonal crystals and leads to poor structural preservation of these specimens. High-pressure freezing induces the formation of different ices (hexagonal, cubic and a high-pressure form) consisting of crystals having sizes smaller than those formed at atmospheric pressure. With both freezing methods, a cryoprotectant has to be added to the biological object to avoid the formation of ice crystals. However, special cases can be encountered: some biological objects contain large amounts of natural cryoprotectant or have a low water content. In these cases, vitrification can be achieved, especially using high-pressure freezing. Cryo-sectioning can be performed on vitrified samples, and the sections studied by electron cryomicroscopy. Images and electron diffraction patterns having a resolution better than 2 and 0.2 nm, respectively, can be obtained with such sections. Because samples containing crystalline ices cannot be cryosectioned, their structure has to be studied using cryosubstitution and resin embedding. We show that bacteria, yeast, and ciliate and marine worm elytrum have cellular compartments with an organization that has not been described by classical techniques relying on chemical fixation of the tissues. A high-pressure artefact affecting the Paramecium trichocysts is described. Such artefacts are not general; for example, we show that 70% of high-pressure frozen yeast cells survive successive high-pressure freezing and thawing steps.  相似文献   

3.
Cryo-electron microscopy of vitrified specimens makes it possible to observe fully hydrated biological samples unimpaired by chemical fixation, staining and dehydration. High-pressure freezing represents important progress since it allows a 10-fold increase in the vitrification depth. High-pressure freezing can also induce the formation of undesirable high-pressure forms of ice. We show that ice III or IX is amorphized under the electron beam at a dose of about 2400 electronsnm−2 and that the resulting amorphous ice is similar to the vitreous water obtained by high-pressure freezing.  相似文献   

4.
A method is described for the cryofixation of biological specimens for ultrastructural analysis and immunocytochemical detection studies. The method employs plunge freezing of specimens in a sealed capillary tube into a cryogen such as liquid propane or liquid nitrogen. Using this method a number of single-cell test specimens were well preserved. Also multicellular organisms, such as Caenorhabditis elegans , could be frozen adequately in low ionic strength media or even in water. The preservation of these unprotected specimens is comparable to that achieved with high-pressure freezing in the presence of cryoprotectant. The results are explained by the fact that cooling of water in a confined space below the melting point gives rise to pressure build-up, which may originate from the conversion of a fraction of the water content into low-density hexagonal ice and/or expansion of water during supercooling. Calculations indicate the pressure may be similar in magnitude to that applied in high-pressure freezing. Because the specimens are plunge cooled, suitable cryogens are not limited to liquid nitrogen. It is shown that a range of cryogens and cryogen temperatures can be used successfully. Because the pressure is generated inside the specimen holders as a result of the cooling rather than applied from an external source as in high-pressure freezing, the technique has been referred to as self-pressurized rapid freezing.  相似文献   

5.
Root tips from Sorghum and Dahlia were frozen without cryoprotection by dipping into nitrogen slush, rapid immersion in liquid propane and by the high-pressure method. Structural preservation of the samples was studied using freeze-fracture (FF) and freeze-substitution (FS) techniques for electron microscopy. It was found that most of the organelles were disrupted by freezing in nitrogen slush and that only the boundary beween the cytoplasm and the vacuole remained visible. If the samples were frozen by rapid immersion in liquid propane, small membraneous organelles, such as dictyosomes, were preserved in peripheral regions of the rhizodermal cells up to 10 μm below the surface of the tissue. Specimens frozen by the high-pressure freezing technique showed good ultrastructural preservation throughout the tissues up to a depth of more than 100 μm.  相似文献   

6.
The two main advantages of cryofixation over chemical fixation methods are the simultaneous stabilization of all cellular components and the much faster rate of fixation. The main drawback pertains to the limited depth (<20 μm surface layer) to which samples can be well frozen when freezing is carried out under atmospheric conditions. High-pressure freezing increases the depth close to 0.6 mm to which samples can be frozen without the formation of structurally distorting ice crystals. This review discusses the theory of high-pressure freezing, the design of the first commercial high-pressure freezing apparatus (the Balzers HPM 010), the operation of this instrument, the quality of freezing, and novel structural observations made on high-pressure-frozen cells and tissues.  相似文献   

7.
Thin layers of pure water or aqueous solutions are frozen in the vitreous state or with the water phase in the form of hexagonal or cubic crystals, either by using a spray-freezing method or by spreading the liquid on alkylamine treated films. The specimens are observed in a conventional and in a scanning transmission electron microscope at temperatures down to 25 K. In general, the formation of crystals and segregation of solutes during freezing, devitrification and evaporation upon warming, take place as foreseen by previous X-ray, thermal, optical and electron microscopical studies. Electron beam damage appears in three forms. The devitrification of vitreous ice. The slow loss of material for the specimen at a rate of about one molecule of pure water for every sixty electrons. The bubbling in solutions of organic material for doses in the range of thousands of e nm?2. We propose a possible model for the mechanism of beam damage in aqueous solutions. The structural and thermal properties of pure frozen water important for electron microscopy are summarized in an appendix.  相似文献   

8.
9.
A digital video plotter (DVP, Leica), the personal computer equivalent of an analytical plotter, was used to measure the coordinates of points chosen from stereo pair images of the surface of frozen hydrated lung imaged at magnifications of 2000 and 5000x with a low-temperature scanning electron microscope (SEM). Rat lung tissue was frozen in vivo with a liquid nitrogen cryoprobe under carefully controlled physiologic conditions. At slow freezing rates, water in the aqueous layer at the surface of the lung segregates into ice crystals (dendrites) which branch in the plane of the surface. Coordinates of points on dendrite surfaces were measured by the DVP and passed to TERRAMODEL (Plus III Software, a land modeling program) where they were used to generate a three-dimensional model, from which surface area and planimetric area of the lung surface were calculated. Additional measurements were made at the top and bottom of the ice structures and a Basic language program was written to calculate the volume of ice on the lung surface. Digital photogrammetry coupled with low-temperature SEM of frozen samples allows measurement of water and water-containing microstructures ubiquitous in biology.  相似文献   

10.
Mccully  Shane  Baker  Huang  Ling  & Canny 《Journal of microscopy》2000,198(1):24-33
The reliability of cryoSEM for visualizing gas embolisms in xylem vessels of intact, functioning roots is examined and discussed. The possibility that these embolisms form as a result of freezing water columns under tension is discounted by a double-freeze experiment. Two regions of the same root, one frozen under tension, the other isolated from the tension by the first freeze, had the same percentage of embolisms, as did also long pieces of root frozen simultaneously along their length. The reliability of energy-dispersive X-ray analysis to measure xylem sap concentration in situ in frozen tissue was established by measurement of KCl standard solution frozen on stubs, and within xylem vessels. Solute heterogeneity within the vessels varied with freezing procedure; deep-freeze > LN2 > cryopliers > liquid ethane, but only the deep-freeze method gave unsatisfactory estimates of concentration for the standard solution. It is concluded that cryoanalytical SEM is useful for direct observation of gas and liquid-filled compartments, and for solute analyses at depth within intact plant organs.  相似文献   

11.
The influence of high-pressure freezing (HPF) on the lipid arrangement in phospholipid model membranes has been investigated. Liposomes consisting of pure dipalmitoylphosphatidylcholine (DPPC) and of DPPC mixed with a branched-chain phosphocholine (1,2-di(4-dodecyl-palmitoyl)-sn-glycero-3-phosphocholine) have been analysed by freeze-fracture electron microscopy. The liposomes were frozen either by plunging into liquid propane or by HPF. The characteristic macroripple-phase of the two-component liposome system is drastically changed in its morphology when frozen under high-pressure conditions. The influence of ethanol which acts as pressure transfer medium was ruled out by control experiments. In contrast, no high-pressure alterations of the pure DPPC bilayer membrane have been observed. We assume that the modification of the binary system is due to a pressure-induced relaxation of a stressed and unstable lipid molecule packing configuration. HPF was performed with a newly designed sample holder for using sandwiched copper platelets with the high-pressure freezing machine Balzers HPM010. The sandwich construction turned out to be superior to the original holder system with regard to freeze-fracturing of fluid samples. By inserting a spacer between the supports samples with a thickness of 20–100 μm can be high-pressure frozen. The sandwich holder is provided with a thermocouple to monitor cooling rates and allows exact sample temperature control. Despite a two-fold mass reduction compared to the original holder no HPF cooling rate improvement has been achieved (4000 °C s−1). We conclude that the cooling process in high-pressure freezing is determined mainly by cryogen velocity.  相似文献   

12.
非闭合电极电容层析成像传感器在冻土测试中的应用   总被引:1,自引:1,他引:0  
为了实现电容层析成像技术对冻土冻结冰峰面的在线、非侵入测试,研制出了满足冻土测试要求的非闭合电极电容层析成像传感器,并对该种传感器的电容分布特性进行了实测;确定出了适合冻土测试的的高、低介电常数的标定物质;搭建了冻土一维冻结实验系统.对含水量8%的湿土样冻结过程的冰峰面迁移进行了电容层析成像测试,并利用IMNSNOF图像重建算法重建出了冻结过程各时刻的冻结截面物质分布图像,由图像可确定出冻土中已冻土、未冻区以及冰峰面的位置.电容层析成像测试结果与温度测试结果相吻合.  相似文献   

13.
The performance of a commercial double-propane-jet freezer (Balzers QFD 101) has been assessed, for rapid freezing of fresh tissues in freeze-etch work. Samples of diaphragm muscle and intestinal villi were frozen between copper sheets, with a spacer to give 20–30μm thickness of tissue. Fracture cuts were made with the Balzers BAF 400 freeze-etch microtome within 5–10μm of a freezing face (i.e. a tissue face in contact with the copper sheets of the frozen sandwich). After some modifications to the QFD 101, replicas showing no evidence of ice were obtained of muscle cells, although for intestinal epithelial cells some evidence of ice formation was found. Infiltration with 5% glycerol or dimethylsulphoxide improves the depth of good freezing. Results and problems arising from such infiltration are briefly discussed.  相似文献   

14.
We have investigated the freezing of specimens in a confined volume for preparation of vitreous samples for cryosectioning. With 15% dextran as a cryoprotectant, a sample sealed in a copper tube begins to freeze into crystalline ice when plunged into liquid ethane. Crystallization rapidly causes an increase in the pressure to the point that much of the sample freezes in a vitreous state. We used synchrotron X‐ray diffraction of samples frozen with various amounts of dextran to characterize the ice phases and crystal orientation, providing insights on the freezing process. We have characterized cryosections obtained from these samples to explore the optimum amount of cryoprotectant. Images of cryosectioned bacteria frozen with various levels of cryoprotectant illustrate effects of cryoprotectant concentration.  相似文献   

15.
High-pressure freezing for immunocytochemistry   总被引:3,自引:0,他引:3  
Ultrastructural immunocytochemistry requires that minimal damage to antigens is imposed by the processing methods. Immersion fixation in cross-linking fixatives with their potential to damage antigens is not an ideal approach and rapid freezing as an alternative sample-stabilization step has a number of advantages. Rapid freezing at ambient pressure restricts the thickness of well-frozen material obtainable to ≈ 15 μm or less. In contrast, high-pressure freezing has been demonstrated to provide ice-crystal-artefact-free freezing of samples up to 200 μm in thickness. There have been few reports of high-pressure freezing for immunocytochemical studies and there is no consensus on the choice of post-freezing sample preparation. A range of freeze-substitution time and temperature protocols were compared with improved tissue architecture as the primary goal, but also to compare ease of resin-embedding, polymerization and immunocytochemical labelling. Freeze-substitution in acetone containing 2% osmium tetroxide followed by epoxy-resin embedding at room temperature gave optimum morphology. Freeze-substitution in methanol was completed within 18 h and in tetrahydrofuran within 48 h but the cellular morphology of the Lowicryl-embedded samples was not as good as when samples were substituted in pure acetone. Acetone freeze-substitution was slow, taking at least 6 days to complete, and gave blocks which were difficult to embed in Lowicryl HM20. Careful handling of frozen samples avoiding rapid temperature changes reduced apparent ice-crystal damage in sections of embedded material. Thus a slow warm-up to freeze-substitution temperature and a long substitution time in acetone gave the best results in terms of freezing quality and cellular morphology. No clear differences emerged between the different freeze-substitution media from immunocytochemical labelling experiments.  相似文献   

16.
Biological specimens prepared for cryoelectron microscopy seem to suffer less damage when they are frozen under 2 kbar pressure rather than under normal conditions. The volume that can be well preserved is larger. This fact has been illustrated in a number of publications on a number of different samples. However, there is a lack of quantitative data concerning the depth of this good specimen preservation. Catalase crystals in various sugar solutions have been used as test objects and vitrification, as determined by electron diffraction, has been used as the criterion for good freezing. Keeping all other conditions equal, the depth of vitrification is approximately 10 times larger with freezing at high, rather than normal, pressure. The high-pressure vitrification depth in a 15–20% sugar solution averages 200 μm. Fully vitrified specimens up to 700 μm in thickness are obtained. When crystalline water is observed it is frequently in the form of high-density ice II, III or IX. These results are probably also relevant for typical biological specimens. The advantage of high-pressure freezing must be balanced by the possible consequences of a considerably increased cooling time and by the damage that may be induced by the pressure.  相似文献   

17.
Frozen hydrated specimens of various latex spheres were used as well-defined systems for the study of electron beam radiation damage to organic inclusions in vitreous, cubic and hexagonal ice. We found that radiolysis of organic material is modified by the presence of ice and that radiolysis in vitreous ice is different from that in crystalline ice. The pattern of damage depends also on the nature of the irradiated polymer, e.g., damage to poly(vinylchloride) is quite different from damage to polyacrylates, although in both polymers the main radiolytic process is chain scission. Some polymers such as polyacrylates were found to be much more stable in vitreous ice than in crystalline ice. The experimental results indicate that free radicals formed at the ice–organic matter interface play an important role in the radiolysis process which affects both the ice and embedded organic particles. Ice may play also a physical role in the process by limiting the diffusion of free radicals away from the interface. Although net mass loss is not much affected by ice, massive structural changes including repolymerization take place in its presence.  相似文献   

18.
A freezing-stage has been developed for use on a standard light-microscope, which can provide reproducible, precisely linear cooling and warming rates in the range from 0·1 to 10,000 K/min. Biological cells in aqueous solutions can be observed during the freeze-thaw cycle; the volume loss due to osmotic efflux of water and the intracellular crystallization of water are detected by video-monitoring. The temperature field generated in the observed samples is comparable to extended cylindrical probes and allows the transfer of cryomicroscopic data to technically used vial geometries. Lymphocytes and granulocytes were observed during freezing using the system described. They were separated and washed, and then frozen on the cold stage of the cryomicroscope at cooling rates ranging from 2 to 500 K/min. Shrinkage of the cells was observed up to 100 K/min and intracellular ice formation could be detected starting at 10 K/min. The results show that human leucocytes show excessive shrinkage up to 36% of their initial volume; the probability of intracellular ice formation exhibits a sharp increase from 10 to 100 K/min where nearly all cells contain ice.  相似文献   

19.
The feasibility of using a focused ion beam (FIB) for the purpose of thinning vitreously frozen biological specimens for transmission electron microscopy (TEM) was explored. A concern was whether heat transfer beyond the direct ion interaction layer might devitrify the ice. To test this possibility, we milled vitreously frozen water on a standard TEM grid with a 30‐keV Ga+ beam, and cryo‐transferred the grid to a TEM for examination. Following FIB milling of the vitreous ice from a thickness of approximately 1200 nm to 200–150 nm, changes characteristic of heat‐induced devitrification were not observed by TEM, in either images or diffraction patterns. Although numerous technical challenges remain, it is anticipated that ‘cryo‐FIB thinning’ of bulk frozen‐hydratred material will be capable of producing specimens for TEM cryo‐tomography with much greater efficiency than cryo‐ultramicrotomy, and without the specimen distortions and handling difficulties of the latter.  相似文献   

20.
We carried out a unique comparative study between three modes of cryo‐scanning electron imaging: high‐vacuum, low‐voltage and low‐vacuum, using ice cream as a model system. Specimens were investigated both with and without a conductive coating (Au/Pd) and at temperatures for which ice either remains fully frozen (< ?110 °C) or undergoes sublimation (?110 to ?90 °C). At high magnification, high‐vacuum imaging of coated specimens gave the best results for ‘static’ specimens (i.e. containing fully frozen ice). Low voltages, such as 1 kV, could be used for imaging uncoated specimens at high vacuum, although slight ‘classical’ charging artefacts remained an issue, and the reduced electron beam penetration tended to decrease the definition between different microstructural features. However, this mode was useful for observing in situ sublimation from uncoated specimens. Low‐vacuum mode, involving small partial pressures of nitrogen gas, was particularly suited to in situ sublimation work: when sublimation was carried out in low vacuum in the absence of an anti‐contaminator plate, sublimation rates were significantly reduced. This is attributed to a small partial pressure of sublimated water vapour remaining near the specimen surface, enhancing thermodynamic stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号