首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
利用机械共混与热模压工艺制备四针氧化锌与纳米氧化锌填充丁腈橡胶(NBR),采用硫化仪和硬度仪分析2种氧化锌填充NBR材料的特性,采用CFT-I型多功能表面综合测试仪研究其在干摩擦条件下的摩擦磨损性能,采用三维形貌仪、SEM/EDS联用对磨损后橡胶表面进行分析,探讨氧化锌在NBR中的摩擦磨损机制。结果表明:与四针氧化锌相比,添加纳米氧化锌可使胶料的焦烧时间与正硫化时间缩短,且可使胶料密度和硬度增大;添加纳米氧化锌的胶料表现出优异的耐摩擦磨损性能,与添加四针氧化锌的胶料相比,其磨损量减少了45.8%,平均摩擦因数降低了2.4%;摩擦过程中纳米氧化锌磨屑堆积能够抵抗外界载荷压入胶料表面,致使摩擦因数存在骤然减小现象;含纳米氧化锌胶料磨损机制为磨料磨损与轻微的黏着磨损,而含四针氧化锌胶料的磨损机制为严重的磨粒磨损与黏着磨损。磨损表面元素分析表明,纳米氧化锌在胶料中Zn元素分布得更为均匀,在摩擦过程形成了致密摩擦膜。  相似文献   

2.
碳纳米管作为填料,可以有效提高橡胶材料的摩擦学性能.采用分子动力学模拟方法研究碳纳米管对丁苯橡胶摩擦学性能的影响.在研究中,建立纯丁苯橡胶和碳纳米管丁苯橡胶两个无定型模型,优化橡胶分子内部构象.为分析摩擦学性能,建立铁原子层对摩副摩擦模型,对铁原子层施加一定的速度实现滑动摩擦.研究结果显示,纯丁苯橡胶的摩擦因数为0.77,碳纳米管丁苯橡胶的摩擦因数为0.628.碳纳米管可以增强对附近分子链的吸附,限制分子链向摩擦界面运动,使摩擦界面的原子浓度降低,减小粘附摩擦,减轻与对摩副的相互作用,减小摩擦界面温升,从而提高橡胶材料的摩擦学性能.  相似文献   

3.
采用分子动力学模拟技术,从分子水平研究碳纳米管(CNTs)增强丁腈橡胶(NBR)复合材料的力学性能及摩擦学性能。运用恒应变法计算材料的力学性能,分别建立纯NBR和CNTs/NBR复合材料的3层模型,并对顶层和底层的铁摩擦副施加剪切载荷,研究材料的摩擦学性能。研究结果表明:在摩擦过程中,由于CNTs表面存在很强的吸附力,抑制了NBR分子链的迁移率,使得CNTs和聚合物分子链间的相互作用增强;CNTs/NBR复合材料具有更高的致密性以及更强的结构,从而表现出了比纯NBR更加优异的力学和摩擦学性能。  相似文献   

4.
为改善丁腈橡胶水润滑轴承的摩擦学性能,以丁腈橡胶为基体,通过添加不同量的超高分子量聚乙烯(UHMWPE)粉末(分别为丁腈橡胶量的12%、50%、100%)制得3种复合材料;分析不同复合材料的结构,研究其在水润滑条件下的摩擦磨损特性,并与纯丁腈橡胶和纯UHMWPE材料进行对比。结果表明:制备的UHMWPE与丁腈橡胶复合材料中,UHMWPE以分散相的形式分布在丁腈橡胶基体中,分布较为均匀;UHMWPE的加入提高了丁腈橡胶材料的自润滑性能,其中UHMWPE的添加量为丁腈橡胶的50%和100%时复合材料在低速时的摩擦因数明显减小;UHMWPE的加入提高了丁腈橡胶基体的硬度,改善了复合材料摩擦表面的挤压变形,使得复合材料的磨损量有所降低。研究表明,一定添加量的UHMWPE添加量可明显改善丁腈橡胶水润滑轴承的摩擦学性能,其最佳添加量为丁腈橡胶的50%。  相似文献   

5.
唐黎明 《润滑与密封》2023,48(12):138-143
利用分子动力学模拟研究碳纳米管(CNTs)直径改变时对丁腈橡胶(NBR)基体力学及摩擦学性能的影响。采用恒应变法考察不同复合材料模型的力学性能,结果表明复合材料力学性能随着NBR基体中CNTs直径增大呈现先增加后减小的趋势。剪切模拟结果表明,剪切后复合材料基体中分子链发生了不同程度的断裂,出现了聚合物分子链向摩擦界面聚集的现象,其中较大直径CNTs增强NBR复合材料中分子链相对完整连续,摩擦学性能改善效果更好。较大直径CNTs对NBR基体具有显著的增强效果,限制了NBR分子链的活动能力,更多的分子链聚集在CNTs周围,复合材料体系致密性及稳定性提高,从而改善了CNTs/NBR复合材料力学及摩擦学性能。其中直径(6,6)CNTs增强NBR复合材料具有更高的剪切模量,力学性能优异,表现出了更好的摩擦磨损性能。  相似文献   

6.
为探讨氧化锌粒径变化对丁腈橡胶(NBR)性能的影响,分别制备普通和纳米氧化锌填充NBR试样,在原油介质中考察2种试样的溶胀性能,运用往复微机控制摩擦磨损试验机,考察原油润滑条件下2种试样的摩擦磨损行为,利用扫描电子显微镜观测其磨损表面形貌。结果表明:与添加普通级化锌试样相比,添加纳米氧化锌试样耐原油溶胀性更好,且在原油润滑条件下具有更小的摩擦因数和较小的磨损量。由扫描电镜分析可见,原油润滑条件下2种试样磨损表面均出现了Schallmach斑纹,显示出典型的黏弹性材料摩擦磨损的特征,但含纳米氧化锌试样磨损程度好于含普通氧化锌试样。纳米氧化锌填充丁腈橡胶具有较高的交联程度,致密的交联网络可有效阻止外界油分子侵入橡胶基体,减轻外界机械应力对于磨损表面的破坏程度,因而表现出了优异的摩擦学性能。  相似文献   

7.
以碳纳米管(MWNT)、多层石墨烯(MLG)和纳米石墨(NG)为填料,采用溶液共混法制备3种不同维度碳纳米材料改性的丁腈橡胶基复合材料试样。在水润滑及重载工况下对3种材料进行摩擦磨损试验,结合摩擦因数、表面形貌和磨损量等参数的测试对材料的摩擦学性能进行比较,通过SEM电镜表征,揭示不同维度碳纳米填料的作用机制。结果表明:碳纳米材料的加入能够明显降低丁腈橡胶材料低速下的摩擦因数,提高其抗磨性能,其中三维结构纳米石墨的改性效果最优。3种碳纳米填料的作用机制分别为:一维碳纳米管因长径比大,易与橡胶分子形成物理交联点,并且起到微轴承作用;二维石墨烯易于脱落转移形成良好的固体润滑膜来改善摩擦磨损性能;三维纳米石墨由于颗粒的粗糙表面与橡胶基体相互嵌入,能增加黏附力,且能减少界面脱黏现象。  相似文献   

8.
针对舰艇推进系统用水润滑轴承低噪声设计需求,研制改性尼龙(PA)的轴承材料及轴承样机,利用多功能摩擦磨损试验机对改性PA材料样品进行摩擦学性能试验,并与丁腈橡胶和赛龙SXL材料的摩擦学性能进行对比;在水润滑轴承试验台上开展PA轴承样机转速特性试验和载荷特性试验,获取不同比压和转速下摩擦因数和振动特性数据。研究结果表明:与丁腈橡胶和赛龙SXL材料相比,改性PA材料具有摩擦因数小、磨损率低的优点;低转速下,水润滑轴承摩擦因数随转速增大而减小,随比压增大而增大,转速增加至100 r/min后,摩擦因数变化趋势逐渐减缓;在工作转速范围内改性PA材料水润滑轴承无异常摩擦振动和噪声。研究结果为舰艇低噪声水润滑艉轴承设计提供参考。  相似文献   

9.
纳米颗粒增强铜基摩擦材料的摩擦学性能   总被引:2,自引:0,他引:2  
基于粉末冶金法分别制备了纳米氮化铝和纳米石墨增强铜基摩擦材料,研究了纳米颗粒对铜基摩擦材料的摩擦磨损和耐热性能的影响规律.采用扫描电子显微镜(SEM)分析了材料的微观结构和磨损形貌,并利用惯性摩擦磨损试验机考核其摩擦学性能.实验结果表明:与未添加纳米颗粒的摩擦材料相比,添加纳米氮化铝和纳米石墨的摩擦材料的摩擦因数高而稳定,且随接合次数增加无明显衰退现象;耐磨性能分别提高了25%和11%;耐热性能分别提高了18%和25%.未添加纳米颗粒的摩擦材料的磨损机制主要为犁沟式磨料磨损,纳米氮化铝和纳米石墨能减少摩擦材料的磨料磨损,从而增强了摩擦材料的耐磨性.实验结果显示,纳米氮化铝和纳米石墨可显著提高铜基摩擦材料的摩擦学性能.  相似文献   

10.
以水润滑轴承用丁腈橡胶(NBR)材料为研究对象,在CBZ-1摩擦磨损试验机上开展其在清水及不同盐分含量水介质中以及不同速度及载荷下的摩擦学试验,对比分析其摩擦因数、磨损量以及磨损表面形貌等摩擦学特性的变化规律。结果表明:盐水质量分数、速度和载荷对丁腈橡胶的摩擦学性能影响显著,其摩擦学特性的变化是盐水质量分数、载荷、速度以及丁腈橡胶的黏弹性等因素共同作用的结果;丁腈橡胶材料与锡青铜配副的摩擦因数随转速的升高而降低,随载荷的增加而降低;随着盐水质量分数的增加,摩擦副的摩擦因数和磨损量先增大而后均有所减小,这是因为盐水质量分数通过影响润滑介质的黏度来改变水润滑的效果,通过对铜盘的腐蚀作用来改变摩擦副的摩擦情况,从而在整体上影响摩擦因数和磨损量的变化。  相似文献   

11.
通过试验和模拟的方法研究了不同压力条件下纳米铜颗粒添加剂在正十六烷基础油中的边界润滑行为。建立具有正弦曲面粗糙峰的边界润滑模型,采用分子动力学分别模拟了在25,50,100,200 MPa 4种压力下,含纳米铜颗粒与不含纳米铜颗粒时润滑油沿膜厚方向的密度分布。在润滑体系的上下固体壁面施加方向相反的剪切速度,计算出壁面原子与铜颗粒原子的应力、固液界面摩擦力、正压力和摩擦因数。采用微纳米划痕仪测量了含铜颗粒润滑剂的摩擦因数。结果表明:不同压力下两种润滑体系中的十六烷基础油均出现分层现象;纳米粗糙峰直接接触时,接触界面仍存在少量的正十六烷分子,且分子主链的排列方向与剪切方向相同;在200 MPa时铜颗粒使固体壁面的最大应力减小35.3%,提高了润滑体系的承载能力;不含铜颗粒润滑体系润滑油膜在50 MPa时破裂,含铜颗粒润滑体系润滑油膜在200 MPa时破裂;模拟计算的边界润滑状态下两种润滑体系的摩擦因数符合试验测量值。  相似文献   

12.
为研究碳纳米管(CNT)和石墨烯片(GNS)协同增强尼龙6(PA6)复合材料摩擦学及力学性能的微观机制,利用分子动力学方法模拟PA6及其复合材料的拉伸过程及摩擦学行为,分析CNT、GNS对PA6复合材料力学及摩擦学性能的影响。建立Fe原子与纯PA6和PA6/ CNT、PA6/GNS、PA6/GNS/CNT复合材料组成的摩擦学模型,并对模型进行几何优化、退火及动力学平衡,通过对Fe原子施加0.2 GPa应力及0.01 nm/ps速度进行摩擦模拟。研究结果发现,PA6/GNS/CNT复合材料摩擦因数在所有材料中最低为0.252;相比其他3种材料,PA6/GNS/CNT复合材料的抗剪切性能最好,且弹性模量及剪切模量均有提高。通过对比分析4种材料的径向分布函数、摩擦界面温度、材料总势能揭示了CNT和GNS协同增强PA6摩擦学及力学性能的作用机制,指出加入的CNT/GNS通过范德华及静电力作用降低了PA6与Fe原子摩擦副之间的相互作用,此外一维CNT与二维GNS通过π-π堆叠杂化作用形成了3D杂交堆叠体系,协同增强了PA6的摩擦学性能。  相似文献   

13.
采用M-2000 型摩擦磨损试验机考察纳米碳酸钙和石墨复合填充聚酰亚胺(PI) 润滑材料在不同速度和载荷下与GCr15 轴承钢对摩时的摩擦磨损性能,并利用扫描电子显微镜分析PI 材料及其对偶件磨损表面形貌。结果表明,单独填充纳米CaCO3时,聚酰亚胺摩擦因数轻微减小,体积磨损率显著增大,而单独填充石墨后,聚酰亚胺摩擦学性能有显著的改善;纳米CaCO3和石墨复合填充后,二者存在协同效应,减摩抗磨能力显著提高;PI材料的摩擦学性能与对偶钢环表面转移膜的性质紧密相关,纳米CaCO3能显著增强转移膜与对偶件的结合强度。  相似文献   

14.
以丁腈橡胶改性酚醛树脂为基体,芳纶/玻纤混杂纤维为增强纤维,经热压烧结制备一种矿井提升系统的摩擦材料,在水润滑条件下研究其摩擦学性能,并用扫描电镜(SEM) 观察材料的磨损形貌。结果表明,添加混杂纤维的摩擦材料相比未添加混杂纤维的摩擦材料具有更好的摩擦学性能,表现为低的摩擦因数和磨损率以及稳定的摩擦学性能。摩擦过程中,添加混杂纤维的材料的磨损机制为疲劳和塑性变形,未添加混杂纤维的材料的磨损机制主要表现为疲劳、犁沟以及少量黏着磨损。  相似文献   

15.
采用M-2000型摩擦磨损试验机考察纳米碳酸钙和石墨复合填充聚酰亚胺(PI)润滑材料在不同速度和载荷下与GCr15轴承钢对摩时的摩擦磨损性能,并利用扫描电子显微镜分析PI材料及其对偶件磨损表面形貌。结果表明,单独填充纳米CaCO_3时,聚酰亚胺摩擦因数轻微减小,体积磨损率显著增大,而单独填充石墨后,聚酰亚胺摩擦学性能有显著的改善;纳米CaCO_3和石墨复合填充后,二者存在协同效应,减摩抗磨能力显著提高;PI材料的摩擦学性能与对偶钢环表面转移膜的性质紧密相关,纳米CaCO_3能显著增强转移膜与对偶件的结合强度。  相似文献   

16.
以丁腈橡胶改性酚醛树脂为基体,芳纶/玻纤混杂纤维为增强纤维,经热压烧结制备一种矿井提升系统的摩擦材料,在水润滑条件下研究其摩擦学性能,并用扫描电镜(SEM)观察材料的磨损形貌。结果表明,添加混杂纤维的摩擦材料相比未添加混杂纤维的摩擦材料具有更好的摩擦学性能,表现为低的摩擦因数和磨损率以及稳定的摩擦学性能。摩擦过程中,添加混杂纤维的材料的磨损机制为疲劳和塑性变形,未添加混杂纤维的材料的磨损机制主要表现为疲劳、犁沟以及少量黏着磨损。  相似文献   

17.
激光粒度和TEM分析表明,经1,3-丙二胺改性的纳米金刚石的分散性得到显著改善.用MMW-1型立式万能摩擦磨损试验机考察了该改性纳米金刚石作为新型油基极压润滑添加剂的摩擦学行为,结果表明,改性纳米金刚石能明显改善摩擦副的微观磨损状态,显著增强基础油的抗磨性能,基础油中纳米金刚石质量分数为0.6%时,其极压值可提高42%,摩擦因数降低19.0%,磨斑直径降低15.4%,且磨斑较难分辨.  相似文献   

18.
采用粉末冶金的方法制备铜基摩擦材料,利用GF150D型定速摩擦试验机,研究摩擦速度为200~3 000 r/min、制动压力为0.38~0.63 MPa条件下,锡的质量分数在0~14%范围内材料的摩擦学行为。结果表明,材料中添加锡可明显提高材料的摩擦因数,其中锡质量分数为12%左右时材料的摩擦因数达到最高值,这是因为低锡含量时材料的强度不高使摩擦因数偏低,而锡含量过高时润滑作用增强,导致材料的摩擦因数降低;锡的质量分数在8%~12%范围对降低高速摩擦条件下的磨损率作用明显,这缘于合理的锡含量提高了材料的强度使材料的耐磨性提高;在低摩擦速度下,摩擦因数随着制动压力的增加而增加,而在高摩擦速度下,摩擦因数随压力增加而降低;在高速高压摩擦中,由于摩擦温度高以及第三体数量和基体软化程度与流动性的增加,导致摩擦因数降低。  相似文献   

19.
不同气氛环境中纳米Al2O3/PTFE复合材料摩擦磨损特性研究   总被引:1,自引:0,他引:1  
利用QG-700高温气氛摩擦磨损试验机, 考察了PTFE及其纳米Al2O3复合材料在干摩擦条件下,在氧气、50%氧气/50%氮气、空气及氮气等气氛环境中的摩擦磨损特性.采用JSM-5610LV型扫描电子显微镜对摩擦表面进行观察,采用EDAX能谱分析仪分析表面成分,研究了干摩擦条件下气氛对复合材料摩擦学性能影响的机制.结果表明:在试验研究范围内,纳米Al2O3的加入可减小PTFE复合材料的磨损量,提高材料的抗磨性能;PTFE和3%Al2O3/PTFE复合材料在氧气环境气氛下的摩擦因数最小,而在氧气和氮气环境气氛下的摩擦因数最大,但磨损量最小;氧气气氛环境最有利于提高PTFE及其复合材料的摩擦学综合性能,氮气环境次之,氧气和氮气环境则有利于增强材料的抗磨性.  相似文献   

20.
为了改善水润滑轴承材料热塑性聚氨酯(TPU)的减振降噪性能,以TPU为基体、聚四氟乙烯(PTFE)为添加剂,通过物理共混的方式制备PTFE/TPU改性复合材料。在RTEC摩擦磨损实验机上模拟泥沙工况,对复合材料进行不同速度和载荷下的摩擦学试验,通过分析复合材料的力学性能、摩擦因数、表面形貌以及振动噪声行为,探讨其摩擦磨损规律与减振降噪性能。结果表明:复合材料的拉伸强度和邵氏硬度均随着PTFE含量的增加而先增加后降低,质量分数8%PTFE改性TPU复合材料表现出最好的力学性能;随着速度与载荷的增大,复合材料的摩擦因数逐渐增大,材料表面损伤、变形、剥落等严重损伤逐渐增多;与纯TPU相比,改性复合材料的摩擦磨损剧烈程度更低,摩擦因数的变化幅度较小且摩擦因数曲线相对光滑,材料微观表面的损伤更少;随着速度与载荷的增大,复合材料的振动响应与辐射噪声现象增大,振动与噪声信号的平均强度增大,频域上的频率分量增多,幅值分量增大,主频向高频转移;PTFE能够改善TPU的摩擦学性能,降低摩擦因数,同时赋予复合材料一定的减振降噪性能,并且效果在高速、高载荷下更为明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号