首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对滚动轴承振动信号特征提取及故障分类困难这一问题,提出了一种基于鲸鱼算法(WOA)的滚动轴承特征信号提取与极限梯度提升的机器学习方法。以模态信号包络熵最小为适应度函数,对变分模态分解(VMD)层数和惩罚因子进行寻优处理。根据所得最佳分解参数对原始信号模态分解,得到各模态分量并根据能量波动法进行特征信号的筛选,最后根据模态分量建立极限梯度提升学习模型。对四类信号进行学习训练和故障分类。结果表明:WOA-VMD与XGBoost结合可以有效降低信号噪声,得到轴承的故障特征,并能够有效的识别出故障类型。  相似文献   

2.
针对滚动轴承早期信号微弱导致故障特征难以提取和故障诊断准确率不高的问题,提出了一种基于改进麻雀搜索算法-变分模态分解(ISSA-VMD)和样本熵(SE)的滚动轴承早期故障特征提取方法。首先,在轴承早期故障诊断过程中,模态分解个数和惩罚因子的选择对变分模态分解(VMD)的分解效果有着很大的影响,为消除人为选择参数的影响,将麻雀搜索算法(SSA)优化为改进麻雀搜索算法(ISSA),利用ISSA参数优化后的VMD方法对信号进行了分解;然后,计算了敏感固有模态函数(IMF)分量的样本熵,构成了特征向量;最后,将特征向量作为支持向量机(SVM)的输入,进行了滚动轴承早期故障类型的识别。研究结果表明:ISSA-VMD+样本熵特征提取模型的故障诊断准确率为98.3%,与SSA-VMD+样本熵、灰狼优化算法(GWO)-VMD+样本熵、鲸鱼优化算法(WOA)-VMD+样本熵、传统VMD+样本熵、经验模态分解(EMD)+样本熵等特征提取模型相比,故障诊断准确率分别提高了3.3%、6.6%、5%、3.3%、5%;该模型可以准确地提取故障特征,提高故障诊断准确率。  相似文献   

3.
针对旋转机械中滚动轴承早期信噪比较低的故障特征提取困难问题,提出了一种基于能量的变分模式分解(variational mode decomposition,简称VMD)模态数k优化选取方法,用以提取滚动轴承早期故障特征,同时避免了信号分解过分或不足。首先,对振动信号进行VMD预分解,分别在不同k值条件下计算分量信号能量与原始信号总能量;其次,根据基于能量的模态数k选取准则,确定最佳模态数值对信号进行VMD分解;最后,通过峭度准则选择分量进行信号重构,对其进行包络分析,提取故障特征频率。将该方法运用到实际故障信号中,有效提取出滚动轴承内圈微弱故障特征,实现了早期故障特征判别,具有一定的应用价值和实际意义。  相似文献   

4.
张婕  张梅  陈万利 《机电工程》2023,(5):682-690
为充分提取非线性、非平稳的轴承故障信号特征信息,进而提高轴承故障诊断精度,提出了一种基于变分模态分解(VMD)和精细复合多尺度均值散布熵(RCMMDE)的轴承故障诊断方法(算法)。首先,使用VMD将轴承故障振动信号分解为了多个模态分量,通过评估原信号与模态分量信号的互相关程度,筛选了其有效模态,并对其进行了信号重构,实现了故障信号的降噪处理目的;然后,使用精细复合均值化代替了传统粗粒化方法,利用RCMMDE方法提取了重构信号的多尺度熵值,构成了特征样本集;最后,通过鲸鱼算法(WOA)对支持向量机(SVM)进行了超参数寻优,构建了最优的故障检测模型,并将特征样本集输入到WOA-SVM模型中进行了轴承故障诊断,并通过实验评估验证了模型的有效性。研究结果表明:该模型准确率达到99.67%,精确率、召回率等各项性能指标均在99%以上,并具有很强的鲁棒性。  相似文献   

5.
为解决齿轮箱故障振动信号信噪比低、故障特征提取难的问题,提出了基于参数优化变分模态分解(VMD)的齿轮箱故障特征提取方法。首先,以分解结果的局部极小包络熵最小为目标,利用果蝇算法搜寻VMD分解参数K和α的最优组合;将原始信号分解成若干IMF分量,从中选择包络熵较小的分量进行信号重构,并对重构信号进行包络解调运算,从重构信号的包络谱中提取故障频率特征。结果表明,利用此方法对实测信号进行处理,成功降噪、提取齿轮箱故障特征,并且比利用经验模态分解方法降噪效果更好,提取的故障特征更加明显。  相似文献   

6.
针对强噪声环境下滚动轴承故障特征信息非常微弱且难以提取的问题,提出基于变分模态分解(Variational Mode Decomposition,VMD)和最小熵解卷积(Minimum Entropy Deconvolution,MED)的滚动轴承微弱故障特征提取方法。基于VMD和MED的滚动轴承微弱故障特征提取方法首先采用VMD对滚动轴承故障信号进行分解,得到多个模态分量,由于噪声的干扰,很难从各个模态分量中提取有效的故障特征信息;然后根据相关系数准则,选取与原始信号相关系数较大的模态分量进行重构,再对重构后的信号进行MED降噪处理;最后对降噪处理后的信号进行Hilbert包络解调,从得出的包络谱中即可准确地提取到故障特征信息。轴承故障实验信号处理结果表明,该方法可以有效地降低噪声的影响,精确地提取滚动轴承微弱的故障特征信息。  相似文献   

7.
韩雪飞  施展  华云松 《机械强度》2021,43(5):1041-1049
针对强背景噪声环境下滚动轴承故障特征信息微弱,单一利用自适应噪声完备集合经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)方法提取效果不佳的问题,提出了基于参数优化的多点最优最小熵解卷积(Parametric Optimized Multipoint Optimal Minimum Entropy Deconvolution Adjusted,POMOMEDA)与CEEMDAN的滚动轴承微弱故障特征提取方法.由于MOMEDA的滤波效果受其中参数-故障周期T、滤波器长度L影响较大,提出采用变步长搜索法对其进行参数寻优.首先利用多点峭度和排列熵指标筛选MOMEDA中的故障周期T与滤波器长度L,对原始信号实现自适应MOMEDA降噪;然后采用CEEMDAN方法分解降噪信号,根据加权峭度(WK)指标选取包含故障信息丰富的固有模态分量(IMF)进行信号重构;最后对重构信号做包络谱分析,提取故障特征信息.通过仿真信号和实测信号分析表明,该方法能够有效提取滚动轴承微弱故障特征信息,具有一定的可靠性.  相似文献   

8.
针对滚动轴承故障信号非线性和非平稳的特点,为准确识别滚动轴承的故障类型,提出了一种基于隐马尔可夫模型(HMM)并利用布谷鸟搜索(CS)优化变分模态分解(VMD)的滚动轴承故障诊断新方法。首先,利用CS分别优化VMD的模态分解个数K和二次惩罚因子α;然后,设置寻优得到的最佳参数组合,将故障信号经VMD分解为一系列本征模态函数分量(IMFs);最后,依据相关系数重构信号,并从重构信号中提取特征向量输入HMM模型中训练及识别。通过对实验采集的轴承故障振动信号的分析,验证了此方法的有效性和准确性。  相似文献   

9.
当柔性薄壁轴承工作时,受长短轴交替产生的冲击成分以及背景噪声的影响,很难从振动信号频谱中提取出故障频率。针对这问题,提出奇异值分解(SVD)与多点最优调整的最小熵解卷积(MOMEDA)相结合的柔性薄壁轴承故障特征提取方法。该方法用SVD算法对原始信号作降噪处理,获得重构信号,应用MOMEDA对重构信号进行增强,突出周期性故障脉冲,通过对处理后的信号进行频谱分析,从而提取出相应的故障频率。通过频谱中的主导频率与柔性薄壁轴承的故障特征频率的对比,可以判断故障位置,实现轴承的故障诊断。试验数据分析结果表明,该方法可以有效提取轴承内、外圈的故障频率。  相似文献   

10.
由于滚动轴承的故障信号在强噪声的背景之下很容易被淹没,并且具有非线性、非平稳等特点致使故障特征提取困难,在分析了滚动轴承振动信号的特点后提出了一种将局部均值分解(LMD)与多点最优最小熵解卷积(MOMEDA)相结合的故障特征提取方法。首先将滚动轴承的故障信号进行LMD分解,得到一系列的PF分量;然后根据相关系数准则对相关程度较高的PF分量进行重构,用MOMEDA方法对重构后的信号进行降噪,提取故障特征。并通过实验验证了该方法的有效性。  相似文献   

11.
《机电工程》2021,38(3)
采用局域均值分解(LMD)提取强噪声背景下的滚动轴承的故障特征效果并不理想,针对该问题,将多点优化最小熵解卷积(MOMEDA)与局域均值分解(LMD)相结合,进行了滚动轴承微弱故障信号处理研究。首先,利用局域均值分解(LMD)对外圈故障轴承的振动信号进行了信号重构;其次,利用多点优化最小熵解卷积(MOMEDA)滤波,进行了包络分析来提取故障特征;最后,将所提出的方法与局域均值分解(LMD)重构后,用最小熵解卷积(MED)滤波故障特征提取方法进行了对比;此外,采用所提方法分析了内圈故障。研究结果表明:所提出的方法对微弱故障特征提取有更好的适用性,能在包络谱中看到多倍频峰值,且峰值附近干扰很少;仿真与试验结果验证了方法的有效性。  相似文献   

12.
基于VMD的故障特征信号提取方法   总被引:2,自引:0,他引:2  
变模式分解(variational mode decomposition,简称VMD)能够将多分量信号一次性分解成多个单分量调幅调频信号(variational intrinsic mode function,简称VIMF),但对噪声比较敏感。利用VMD对噪声的敏感特性,提出了一种基于VMD的降噪方法。利用排列熵定量确定VMD分解后各分量的含噪程度,对高噪分量直接剔除,对低噪分量进行Savitzky-Golay平滑处理,然后重构信号。运用该方法降噪后,对重构信号进行变模式分解,能够有效提取故障特征信号。仿真和实例分析表明,基于VMD的降噪方法的降噪效果优于小波变换降噪方法,VMD能有效提取故障特征信号。  相似文献   

13.
针对齿轮振动信号非线性、非平稳的特点,提出一种基于集合经验模态分解(EEMD)与奇异熵增量谱的齿轮故障特征提取方法。首先,利用EEMD方法将齿轮振动信号分解为若干个平稳的本征模态函数(IMF)分量。EEMD方法利用正态分布白噪声的二进尺度分解特性,能够有效抑制经验模态分解(EMD)中的模态混叠现象。但由于背景噪声和残余辅助白噪声的影响,EEMD分解得到的IMF分量难以准确提取齿轮故障特征。利用奇异值分解(SVD)对IMF分量进行消噪和重构,根据奇异熵增量谱确定重构阶次,准确地提取齿轮的故障特征频率。仿真信号分析和齿轮箱齿轮故障实验验证了该方法的准确性和有效性。  相似文献   

14.
为提高轴承故障特征频率的提取效果,提出了变分模态分解(VMD)和局部保持投影(LPP)相融合的轴承故障特征频率提取方法.该方法主要有三个步骤:一是利用VMD对信号进行分解,得到若干个本征模态分量(IMF),并将各分量组成高维信号矩阵;二是利用LPP对高维信号矩阵进行降维得到低维信号矩阵,而后进行信号重构,得到重构信号;三是对重构信号进行包络分析,根据包络谱中突出的频率成分判断轴承故障类型.轴承故障诊断实例验证了方法的有效性.  相似文献   

15.
针对滚动轴承工作环境恶劣且采集到的振动信号具有非线性、非平稳性等特征,为了自适应提取故障特征以及提高轴承故障智能诊断准确率,提出基于鲸鱼算法(Whale Optimization Algorithm,WOA)优化变分模态分解(Variational Mode Decomposition,VMD)与卷积神经网络(Convolution Neural Network,CNN)相结合的故障诊断方法。首先,使用鲸鱼优化算法对VMD超参数进行寻优,找到VMD最优的分解层数与惩罚因子,并利用优化后的VMD对轴承原始信号进行分解。其次,用连续小波变换将分解得到的一维本征模态信号转化为相应的二维时频图。最后,将二维时频图作为二维卷积神经网络的输入,并对其输入的时频图进行深层特征提取与模式识别。实验表明,所提出的方法能高效提取故障特征,准确率高达99.78%。  相似文献   

16.
为了自适应确定变分模态分解(variational mode decomposition,简称VMD)的有关参数,减少轴承振动信号处理过程中对先验知识的依赖,提出了一种基于微分搜索(differential search,简称DS)的VMD参数自适应寻优算法,结合相关峭度指标实现轴承故障特征自适应提取。首先,采用DS算法对VMD的相关参数进行自适应寻优,并对信号进行VMD;其次,计算各本征模态函数(intrinsic mode functions,简称IMF)的相关峭度值,并利用该指标对各分量进行加权重构;然后,对重构信号进行包络谱分析以提取轴承故障特征;最后,将所提出方法与通过经验模态分解(empirical mode decomposition,简称EMD)方法及人为确定参数的传统VMD进行对比。仿真信号和实验数据分析表明:DS算法可有效确定VMD相关参数组合,且所提出方法可以更加准确、有效地识别出滚动轴承故障特征频率;与快速峭度图方法对比,所提出方法依然可以获得更好的结果。  相似文献   

17.
滚动轴承常被用于风力涡轮机、发动机等旋转机械中,由于负载、电流变化等因素将导致旋转设备中的滚动轴承在变速条件下运行。在变转速的工况下,现有时频分析、共振解调等故障诊断方法并不能有效提取故障特征,且考虑到强大背景噪声下存在故障特征提取困难的问题,本文提出了一种基于广义变分模态分解(Generalized variational mode decomposition, GVMD)和分数阶傅里叶变换(Fractional fourier transform, FRFT)的变工况故障特征提取方法。首先将在变工况下故障特征频率呈非线性分布的原始振动信号广义解调为近似线性分布,其次对解调后的信号进行变分模态分解(Variational mode decomposition, VMD)得到本征模态函数分量(Intrinsic mode functions, IMF),根据相关系数准则选取最优的分量进行分数阶域的滤波,最后通过分析滤波后信号的1.5维包络谱提取故障特征频率。通过滚动轴承仿真数据和实验数据的验证表明本文所提方法能够有效提取变工况下滚动轴承的故障特征频率。  相似文献   

18.
针对早期微弱故障信号易受噪声干扰、难以提取和识别的问题,提出一种基于变分模态分解(variational mode decomposition,简称VMD)多尺度散布熵(multiscale dispersion entropy,简称MDE)和极限学习机(extreme learning machine,简称ELM)的柱塞泵微弱故障诊断方法。首先,采集各状态的振动信号进行VMD分解,得到若干模态分量,根据各模态分量Hilbert包络谱中特征频率能量贡献率大小,提出以归一化特征能量占比(feature energy ratio,简称FER)为重构准则的变分模态分解特征能量重构法(variational mode decomposition feature-energyreconsitution,简称VMDF),对各模态分量进行信号重构;其次,计算重构信号的MDE,对各尺度散布熵进行分析,选择有效尺度散布熵作为特征向量;最后,将提取的特征向量输入ELM完成故障模式识别。柱塞泵不同程度滑靴端面磨损故障的实验结果表明,该方法不仅提高了模式识别效率,还可以更好地反映故障程度变化规律,具有较好的应用性。  相似文献   

19.
20.
针对强噪声环境下滚动轴承早期故障特征信息非常微弱且难以提取的问题,提出了基于变分模态分解(Variational Mode Decomposition,VMD)和奇异值差分谱的故障诊断方法。首先对轴承故障振动信号进行VMD分解得到一系列本征模态分量(Intrinsic Mode Functions,IMFS),由于噪声的干扰,很难从各个模态分量中提取有效的故障特征信息;然后根据相关系数准则,对相关系数较大的分量构建Hanke矩阵进行奇异值分解,求取奇异值差分谱,从差分谱中确定重构信号的有效阶次对信号进行降噪处理;最后对降噪处理后的信号进行Hilbert包络处理,从包络谱中即可准确地提取到故障特征频率。仿真信号和工程数据处理结果表明,该方法能够有效地降低噪声的影响,精确地提取到轴承微弱的故障特征频率信息。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号