首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
双腔体压电泵的设计   总被引:1,自引:1,他引:0  
由于自吸性差、对气泡敏感等原因,单腔体压电泵在应用中受到限制,而多腔体结构是提高压电泵性能的有效途径.通过分析腔体容积与压力变化过程得出:双腔体串联压电泵只能采用串联驱动方式而不能采用并联驱动方式,双腔体并联压电泵只能采用并联驱动方式而不能采用串联驱动方式.制作双腔串联、并联压电泵样机并进行测试可以得出:串联压电泵在驱动电压200 V,频率152 Hz时,输出流量达到最大为1 150 ml/min;并联泵在压电驱动电压140 V,频率220 Hz时,输出流量达到最大为640 ml/min;因此多腔泵采用腔体串联结构能提高压电泵的工作效率,提高泵的工作性能.  相似文献   

2.
双腔薄膜阀压电泵的实验研究   总被引:10,自引:5,他引:5  
实验研究了理论所不能解释的多种因素对双腔压电泵输出流量的影响规律。选取了一种高效的橡胶薄膜阀片,设计并制作了具有较高输出能力的双腔泵样机。120 V交流信号下,双腔串联压电泵最佳工作频率为180 Hz,输出参数为520 ml/min、22 kPa;双腔并联压电泵最佳工作频率为420 Hz,输出参数为980 ml/min、28 kPa。通过实验确定了双腔压电泵的最佳腔体高度及双腔串联、并联压电泵压电片的最佳驱动方式。  相似文献   

3.
为提高双腔串联压电泵的输出性能,对泵的进口腔与出口腔的容积比进行了优化设计。分别设计了容积比为1.9、1.5、1.3三种串联压电泵样机,并对样机进行了试验测试。试验结果显示,采用增加容积比的方式可以提高双腔串联压电泵的输出流量,但不能提高其输出压力;对每个不同腔体容积比的双腔串联压电泵在异步驱动和同步驱动下进行了输出性能测试,测试结果显示,当输送气体时,两种驱动方式均有很好的流量输出,且输出结果比较接近,但仅有异相驱动时才能输出液体。分析结果为提高双腔串联压电泵的输出性能提供了很好的依据。  相似文献   

4.
为提高压电泵的输出性能,设计了一种层叠型四腔并联有阀压电泵。在80 V正弦交流电驱动下,40~400 Hz工作频率内,以水和空气作为介质,分别选用不同数量的压电振子进行驱动,在不同的驱动方式(指振子间工作时的相位差)下对泵的输出性能进行试验测试。结果显示,当泵送空气时,不管多少个振子进行驱动,驱动方式对泵的输出流量几乎不产生任何影响,在测试频率范围内,输出流量随频率成线性变化,最大输出气体流量可达3600 mL/min;当泵送液体时,驱动方式对泵的输出流量影响很大,当同侧的压电振子为异步驱动时,输出流量的效果更好,在工作频率180 Hz时,最大输出液体流量可达830 mL/min。试验结果为多振子驱动压电泵选择合适的振子间驱动方式提供了参考依据。  相似文献   

5.
具有微混合功能的多级Y型流管无阀压电泵存在着输出流量与振子带载能力不平衡的问题。为此,提出了一种非对称分叉流管无阀压电泵。首先,理论分析了该无阀压电泵输出流量与流管流阻间的关系;其次,利用有限元软件数值计算了多级Y型流管的流阻特性;最后,采用光固化快速成型技术加工了样机,并进行了泵特性试验和振子振动测试。试验结果表明:在峰峰值200 V正弦波交流电驱动下,该压电泵的流量、扬程和压电振子的振幅都随驱动频率增加呈现先增大后减小的趋势;当驱动频率为31 Hz时,最大流量为4 g/min;驱动频率为38 Hz时,最大扬程为40.5 mmH2O。在试验施加电压范围内,该泵的输出性能与驱动电压呈正相关性。本研究验证了非对称流道树型无阀压电泵的可行性,为非对称无阀压电泵在微流道滴灌和微混合等领域的应用提供了参考。  相似文献   

6.
为提高压电泵的输出性能,设计了两种结构的三腔并联压电泵。一种采用"层叠式"结构,另一种采用"一字"排列式结构。比较两种结构的体积,"层叠式"压电泵体积为74880 mm~3,"排式"压电泵体积为98928 mm~3,前者是后者的0.75倍。在80 V正弦交流电驱动下,工作频率在40~400 Hz内,对两种结构的三腔并联压电泵进行输出性能测试。可得,两种结构压电泵最大输出气体流量可达3405 mL/min,输出液体流量可达708 mL/min,输送液体压力最大可达20.6 kPa。结果显示,三腔并联压电泵可大幅提高泵的输出能力,并且采用"层叠式"结构设计可大幅度减小泵体体积。  相似文献   

7.
为提高无阀压电泵的流量特性和解决泵加工工艺性差的问题,研制出了锥形流管坡面腔底无阀泵。首先,提出并设计了锥形流管坡面腔底无阀泵,分析了该泵的工作原理;然后,利用ansys软件对泵腔内流场做了模拟分析,分析结果表明该泵具有传输流体的能力;最后,利用3D打印技术制作了锥形流管坡面腔底无阀泵,并对泵的频率-流量特性进行了试验,驱动频率为8Hz时,锥形流管坡面腔底无阀泵的流量达到最大值26.8ml/min,比相同尺寸坡面腔底无阀压电泵在相同驱动电压条件下输出的最大流量增加了18.6%。试验结果表明,锥形流管坡面腔底无阀泵的流量特性优于坡面腔底无阀压电泵,且采用3D打印技术制作压电泵,提高了泵加工的工艺性,缩短了加工周期,降低了加工成本。  相似文献   

8.
微型压电泵系统的设计研究   总被引:12,自引:7,他引:5  
提出了一种整机采用迭片式结构,单向阀采用悬臂梁式薄片阀的新结构微型压电泵,设计、制作了实验用样机泵,设计了正弦信号发生器电路,将产生的正弦信号经过电压放大和功率放大后,作为该泵的电源驱动,通过对该泵的工作性能进行较为系统的实验测试和研究,提出了利用多腔体串联结构提高压电泵性能的优化设计方案。实验测试表明,该泵工作性能稳定(样机尺寸:Φ15 mm×1.8 mm;50 V正弦信号输入,80 Hz条件下,最大输出压力22 kPa,流量达到3.6 ml/min)。该泵的设计方法及所用制作工艺可用于研发大量生产的实用微型泵。  相似文献   

9.
为了提高微型泵输出流量以及获得连续出流能力,设计了一种基于合成射流原理的无阀气体压电泵。首先,分析了压电气泵的工作原理,测试了压电振子的振幅;其次,利用CFX软件对无阀气泵进行仿真分析,得到压电气泵在0T,1/4T,2/4T和3/4T时刻的气体流速分布,以及容腔高度、泵腔高度、射流孔直径和出口直径对气泵流量的影响规律;最后,制作了无阀气体压电泵的实验样机。测试结果表明,当无阀压电气泵在驱动电压为120V、驱动频率为400Hz、容腔高度为0.1mm、泵腔高度为1.4mm、射流孔直径为1.3mm和出口直径为2mm时,泵输出气体流量为1800ml/min左右,实验与仿真分析基本吻合。该气泵能输出较大气体流量并具有连续出流的能力。  相似文献   

10.
多级“Y”型流管无阀压电泵的原理与试验验证(实验视频)   总被引:1,自引:1,他引:1  
针对目前微流体混合器多需要外接动力源,且多数微混合器只能进行液体混合而不能输送液体的问题,提出将无阀压电泵引入微混合器领域,并研制了一种集混合与输送于一体的多级“Y”型流管无阀压电泵。首先,提出了多级“Y”型流管,进而设计了多级“Y”型流管无阀压电泵,并分析其工作原理;然后,对该无阀压电泵的流管流阻特性及泵流量进行理论分析;同时,利用有限元软件对多级“Y”型流管无阀压电泵进行了流场模拟,结果表明该压电泵具有单向传输作用。最后,制作了多级“Y”型流管无阀压电泵样机,并进行了泵流量与背压试验。试验结果显示:驱动电压峰峰值为100 V,频率为16 Hz时,流量达到最大,为16.2 ml/min;驱动电压峰峰值为100 V,频率为14 Hz时,输出背压最大,约为64 mm水柱。得到的试验数据证明了多级“Y”型流管无阀压电泵的有效性。(实验视频)  相似文献   

11.
压电薄膜喷流泵研究   总被引:2,自引:4,他引:2  
将压电流体驱动技术和仿生技术、喷流推进技术结合,提出了一种新型的压电喷水推进装置,并对该装置的核心部件—压电喷流泵进行了研究。详细分析和介绍了泵的结构及工作原理,设计制作了实验用样机,并进行了性能测试。实验测试表明,该泵工作性能稳定,喷流量大,在正弦信号激励下,电压为190 V,工作频率为140 Hz时,最大喷流量可达到714 ml/min。  相似文献   

12.
为提高层叠型双腔并联压电泵的输出性能,在出口通孔处设计了隔板结构,以阻止流体同时出流时产生的正向碰撞和向对面腔内回流问题。采用液体水和空气作为输送介质,对试验样机进行了试验测试,结果表明:隔板结构可以大幅度提高层叠型双腔并联压电泵输送液体介质的能力,在80 V正弦交流电驱动下,最大输出流量可达460 mL·min-1,与没有隔板结构比较,输出流量可提高约30%。对该结构压电泵单个振子驱动与2个振子驱动时的关系进行了试验验证,结果表明:当工作介质为气体时,不管是同步驱动或异步驱动,2个振子工作时输出流量约为2个单个振子独立工作时输出流量之和;当工作介质为液体时,在2个振子同步驱动时输出流量出现小于单个振子工作时的输出流量情况,而异步驱动输出流量约为2个单个振子独立工作时输出流量和的1.4倍。  相似文献   

13.
基于悬臂梁阀的微型压电泵的实验研究   总被引:3,自引:0,他引:3  
程光明  刘国君  杨志刚  曾平 《机械科学与技术》2005,24(10):1181-1183,1221
利用压电晶片致动式压电泵的工作原理,提出一种整机采用迭片式结构,单向阀采用悬臂梁式薄片阀的新结构微型压电泵,设计、制作了实验样机,并对该泵的工作性能进行了较为系统的实验测试和研究,并提出了利用多腔体串联结构提高压电泵性能的优化设计方案。通过实验测试:该泵工作性能稳定,整机具有较高的体积功能比(样机尺寸:15 mm×1.8 mm;50 V正弦信号输入,80 Hz条件下,最大输出压力22 kPa,流量达到3.6 m l/m in)。该泵的设计方法及所用制作工艺对研发适于大量生产的实用微型泵是一个有益的尝试。  相似文献   

14.
组合式压电驱动芯片水冷系统   总被引:1,自引:0,他引:1  
为了提高压电驱动芯片水冷系统的适用性、可维护性以及冷却效率,本文提出一种组合式压电驱动芯片水冷系统。首先,测试和分析了芯片水冷系统中组合式泵单元在220Vpp方波驱动下不同组合方式(串/并联)、泵工作数量以及相对位置时的输出性能,接着,基于组合式泵单元的试验结果进行芯片水冷系统的水冷效果研究。实验结果表明:串联组合双泵工作时,双泵位于串联组合首尾位置(AD)时性能较优,在30Hz时获得最大输出压力(25kPa);串联组合四泵工作时,分别在35Hz和55Hz获得了最大压力(23.5kPa)和最大流量(13.5mL/min);并联组合双泵工作时,双泵都位于组合首位(AC)时性能较差;并联组合四泵工作时,分别在50Hz和60Hz获得最大输出流量(22mL/min)和最大输出压力(12.6kPa);通过串并联以及泵工作数量的切换获得了芯片水冷系统的冷却效果,不同的组合方式以及泵工作数量可以获得不同的冷却效果。获得了组合式压电驱动芯片水冷系统的驱动参数,为计算机芯片有效散热提供一条新途径。  相似文献   

15.
根据静脉瓣结构形式,设计了一种半柔性阀压电泵。首先,介绍了半柔性阀压电泵的结构及工作原理;其次,对阀体进行了理论分析;最后,加工了实验样机,对样机进行性能测试实验。实验结果表明:在驱动电压为220V、频率为7Hz时,半柔性阀压电泵的进出口压差可达到199mm;在驱动电压为220V、频率为11Hz时,半柔性阀压电泵的实验流量为44.5ml/min。随着驱动电压的升高,工作频率与流量出现单峰与双峰的现象。该研究证明了半柔性阀压电泵具有泵的功能并可以实现有阀和无阀状态,验证了其有效性和理论分析的正确性。  相似文献   

16.
针对传统的容积型流阻差式无阀压电泵具有吸入周期和排出周期,存在着流动脉动大、流量小的问题,提出一种新型的鱼鳍摆动式无阀压电泵。模仿在鱼类中巡游速度最快的金枪鱼的鱼体结构,设计了压电双晶片结构的压电振子,并将其尾鳍设计成柔性叶片状。分析了压电双晶片结构悬臂梁的受力变形、模态振型在机电转换效率方面的关系。研制了泵的样机并测量了激励电压在100 V时泵的流量。实验结果表明:振子工作在1阶振型时,泵水效应不明显;振子工作在2阶振型时,谐振频率为740 Hz,泵的流量为266 mL/min;振子工作在3阶振型时,谐振频率为1 280 Hz,泵的流量为105 mL/min。  相似文献   

17.
有阀压电泵在精细化工、MEMS、生物医学工程等领域具有重大应用前景。为了克服有阀压电泵结构复杂、跟从与截止性差、成本高等缺点,设计一种异形拟悬臂梁结构的螺旋线形弹性固支阀,其螺旋臂长是简单悬臂梁阀的数倍,工作时开启度大,且因其螺旋线形弹性结构,阀体不仅可以上下回位,左右也具有对中功能,并把这种阀安装在有阀压电泵的泵腔内形成螺旋线形阀压电泵。在深入分析有阀压电泵优缺点的基础上分析螺旋线形阀压电泵的工作原理,依照泵内部能量传递的路径建立压电驱动(电压、频率)为输入与泵流动(流量、压差)为输出之间的关系式,加工试验样机,并进行性能测试试验,螺旋线形阀压电泵具有泵功能,证明了其有效性和理论分析的正确性。试验结果表明:随着驱动电压的增大,泵的输出流量和压差呈上升趋势,这个结果与Matlab数值仿真计算结果趋势一致。在电压为220 V、频率为30 Hz时,得到仿真流量41.26 mL/min,实际试验流量为10.2 mL/min,误差75.3%;在电压为220 V、频率为20 Hz时,得到仿真流量27.51 mL/min,实际试验流量为22.8 mL/min,误差17.2%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号