首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Titanium-containing diamond-like carbon (Ti-DLC) coatings were deposited on steel with a close-field unbalanced magnetron sputtering in a mixed argon/acetylene atmosphere. The morphology and structure of Ti-DLC coatings were investigated by scanning electron microscopy, transmission electron microscopy, atomic force microscopy and Raman spectroscopy. Nanoindentation, nanoscratch and unlubricated wear tests were carried out to evaluate the hardness, adhesive and tribological properties of Ti-DLC coatings. Electron microscopic observations demonstrated the presence of titanium-rich nanoscale regions surrounded by amorphous carbon structures in Ti-DLC coating. The Ti-DLC coatings exhibit friction coefficients of 0.12–0.25 and wear rates of 1.82 × 10?9 to 4.29 × 10?8 mm3/Nm, depending on the counterfaces, sliding speed and temperature. The Ti-DLC/alumina tribo-pair shows a lower friction coefficient than the Ti-DLC/steel tribo-pair under the identical wear conditions. Increasing the test temperature from room temperature to 200 °C reduces the coefficient of friction and, however, clearly increases the wear rate of Ti-DLC coatings. Different wear mechanisms, such as surface polishing, delamination and tribo-chemical reactions, were found in the tribo-contact areas, depending on different wear conditions.  相似文献   

2.
《Wear》2007,262(7-8):876-882
Transfer films of PTFE/bronze composites with 5–30% volume content of bronze were prepared using a RFT friction and wear tester on surface of AISI-1045 steel bar by different sliding time (5–60 min). Tribological properties of these transfer films were studied using a DFPM reciprocating tribometer in a point contacting configuration under normal loads of 0.5, 1.0, 2.0 and 3.0 N. Thickness and surface morphology of the transfer films were investigated. It was found thickness of the transfer films slightly increased along with the increase of bronze content of corresponding composites. Increased sliding time of transfer film preparation is helpful to form transfer film with better ductibility and continuity, but sliding time almost has no effect on tribological properties of the transfer film. Higher bronze content in the composite improved tribological properties of the corresponding transfer film, i.e., reduced friction coefficient and prolonged wear life. All these transfer films are sensitive to load change. Their wear life becomes shorter along with the increase of load. SEM image of the worn surface show fatigue wear and adhesion wear have happened on the transfer film during the friction process. The author believe bronze in the transfer film effectively partaked in shear force applied on the transfer film and its good ductibility helped to improve tribological properties of the transfer films.  相似文献   

3.
《Wear》2002,252(9-10):777-786
The tribological properties of a diamond (1 1 1) pin slid on subnanometer thick Ag films, which were deposited on a cleaned Si(1 1 1) substrate, were studied using a pin-on-plate tribometer. The preparation of Ag ultrathin films and frictional experiments were performed in an ultrahigh vacuum (UHV) chamber at a pressure of 10−8 Pa. The frictional experiments were carried out at a sliding speed of 0.1 mm/s and at a normal load of 250 mN. An extremely low coefficient of friction, less than 0.01, was obtained when the pin was slid on Ag films, whose thicknesses were 1 and 2.6 monolayer (ML) under reciprocal motion. The minimum coefficient of friction was less than 0.004 for Ag 1 ML film. After the extremely low coefficient of friction was obtained, Ag remained on the worn track without any transfer to the diamond pin, as confirmed by Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS).The mechanisms of extremely low coefficients of friction are discussed in terms of the chemical bonding force between atoms of the topmost layers, and Ag coverage on the Si surface.  相似文献   

4.
《Wear》2002,252(7-8):595-606
The frictional properties of thin KCl films deposited onto clean iron are measured in ultrahigh vacuum using a tungsten carbide tribotip, where the observed initial rapid decrease in friction coefficient with film thickness is proposed to be due to the formation of a complete KCl monolayer where the friction coefficient of this film is ∼0.27. A 1800 Å thick KCl film shows a hardness and friction coefficient similar to those for bulk KCl when the width of the surface height distribution of the tribotip measured by atomic force microscopy (AFM) is 2000–3000 Å. This implies that the KCl film behaves like the bulk material when the film thickness exceeds the roughness of the interfaces.  相似文献   

5.
In order to improve the tribological properties of titanium-based implants, sodium hydroxide (NaOH), hydrogen peroxide (H2O2) solutions, sol–gel hydroxyapatite (HA) film, thermal treatment and combined methods of NaOH solution/HA film, H2O2 solution/HA film are used to modify the surfaces of Ti–6Al–4V (coded TC4). The chemical states of some typical elements in the modified surfaces were detected by means of X-ray photoelectron spectroscopy (XPS). The tribological properties of modified surfaces sliding against an AISI52100 steel ball were evaluated on a reciprocating friction and wear tester. As the results, complex surfaces with varied components are obtained. All the methods are effective in improving the wear resistance of Ti–6Al–4V in different degrees. Among all, the surface modified by the combined method of NaOH solution/HA film gives the best tribological performances. The friction coefficient is also greatly reduced by the modification of NaOH solution. The order of the wear resistance under 3 N is as following: Ti–NaOH–HA>Ti–NaOH>Ti–HA>Ti–H2O2–HA>Ti–H2O2 >Ti–500; under 1 N is Ti–HA, Ti–NaOH–HA>Ti–NaOH. For Ti–H2O2, a very low friction coefficient and long wear life over 2000 passes is obtained under 1 N. SEM observation of the morphologies of worn surfaces indicates that the wear of TC4 is characteristic of abrasive wear. Differently, abrasion, plastic deformation and micro–crack dominate the wear of Ti–HA; slight abrasive wear dominate the wear mechanism of Ti–NaOH and microfracture and abrasive wear for Ti–NaOH–HA and Ti–H2O2–HA, while the sample modified by thermal treatment is characterized by sever fracture. The superior friction reduction and wear resistance of HA films are greatly attributed to the slight plastic deformation of the film. NaOH solution is superior in improving the wear resistance and decreasing the friction coefficient under relative higher load (3 N) and H2O2 is helpful to reduce friction and wear under relatively lower load (1 N). Combined method of Ti–NaOH–HA is suggested to improve the wear resistance of Ti–6Al–4V for medial applications under fretting situations.  相似文献   

6.
Nanotribological properties of NbSe2 are studied using an atomic friction force microscope. The friction force is measured as a function of normal load and scan speeds ranging from 10 nm s−1 to 40 μm s−1 under two atmospheres (air and argon). At low speed, no effect of atmosphere is noticed and a linear relationship between the friction and normal forces is observed leading to a friction coefficient close to 0.02 for both atmospheres. At high speed, the tip/surface contact obeys the JKR theory and the tribological properties are atmosphere dependent: the shear stress measured in air environment is three times lower than the one measured under argon atmosphere. A special attention is paid to interpret these results through numerical data obtained from a simple athermal model based on Tomlinson approach.  相似文献   

7.
Iron third body contribution to friction performance of copper-matrix friction composites was explored by adding prefabricated iron powder into the friction surface. Friction tests were carried out under a sliding speed (V) range of 1.57–23.55 m/s and contact pressures (P) of 0.25–0.51?MPa by a pin-on-disc tribometer. These showed that an iron third body increased the friction coefficient when P ? V <2 75, and the average friction coefficient increment was 0.04 (7.29%). The reason was that iron third bodies played the role of abrasives, promoting an engaging force between the friction couple. When P ? V > 275, the average friction coefficient decrement was 0.04 (8.59%). This was because of oxidation of the iron third body, such that a smooth and dense oxide film was formed on the surface, assisting in a friction coefficient reduction.  相似文献   

8.
Friction between titanium spheres and an artificially structured silicon surface was measured with a friction force microscope. Two spheres with radii of 2.3 μm and 7.9 μm were firmly glued to the tip of the microscope cantilever. A periodic stripe pattern with a groove depth of 26 nm and systematically increasing groove width from 500 nm to 3500 nm was fabricated from a silicon wafer with a focused ion beam. The sphere substrate friction coefficient shows a strong enhancement at a certain groove periodicity, which is related to geometrical interlocking of the two surfaces. This shows that careful modification of the surface roughness can help to control the tribological behavior of mesoscale contacts.  相似文献   

9.
Frictional force microscope (FFM) was used to investigate the nanoscale frictional behavior of GeSbTe films deposited by magnetron sputtering. The effects of relative humidity, scanning velocity and surface roughness on friction were taken into account. Besides, the frictional behavior of GeSbTe films with different compositions was analyzed. Experimental results show that the coefficient of friction of GeSbTe films is almost independent of scanning velocity, while the frictional force decreases with increasing velocity. Both the relationship of friction vs. normal load and that of friction vs. RMS keep relatively linear, and the coefficient of friction increases with the increase in RMS. The influence of humidity on adhesion between the tip and the GeSb2Te4 film is more significant than that between the tip and the Ge2Sb2Te5 film.  相似文献   

10.
The oxidation kinetics of ferritic stainless steel 430 was studied in dry and humid air at 1090 °C by Thermo Gravimetric Analysis (TGA). Different atmospheres and heating times were adopted for reheating to obtain different compositions and thickness of the oxide scale. Hot rolling was performed on a 2-high Hille 100 experimental rolling mill at various reductions. Oxide scale thickness and composition were analysed with optical microscopy (OM), scanning electron microscope (SEM) and X-ray diffraction (XRD). The surface profiles were examined by a digital microscope, and the topographic features of the thin oxide scale surface were examined with an atomic force microscope (AFM) before and after rolling. The oxide scale surface and steel/oxide interface roughness were measured after rolling. Inverse calculation of the coefficient of friction was employed to analyse and the effect of oxide scale on friction in hot rolling. The coefficient of friction depends not only on the thickness of the oxide scale, but also on its composition and surface topography before hot rolling.  相似文献   

11.
《Wear》2002,252(5-6):394-400
Cyclotriphosphazene lubricants were synthesized and the relationship between their structures and tribological properties was investigated using an optimol SRV oscillating friction and wear tester and one-way reciprocating friction tester. The elemental composition and chemical nature of the antiwear films generated on steel surface were analyzed on a scanning electron microscope with a Kevex energy dispersive X-ray analyzer attachment (SEM–EDS) and X-ray photoelectron spectrometer (XPS). It was found that aryloxyphosphazene with polar substituent as a lubricant of steel–steel and steel–aluminum pair gave low wear, while aryloxyphosphazene with nonpolar group on the phenyl pendant led to high wear. Phosphazene provides poor lubricity for the steel–aluminum system under low load (0.5–3 N). The XPS analytical results of the antiwear films generated on the steel and aluminum surface indicate that phosphazene reacted with steel or aluminum counterface and formed a surface protecting film consisting of fluoride and organic compounds containing O, C, F, N, and P during friction. This contributes to reduce the friction and wear of steel–aluminum system.  相似文献   

12.
The nanotribological properties of amorphous carbon (a-C) films of thickness in the range of 5-85 nm sputtered on Si(1 0 0) substrates were investigated with a surface force microscope (SFM), using a Berkovich diamond tip of nominal radius of curvature approximately equal to 200 nm and contact (normal) loads between 10 and 1200 μN. The dependence of the friction and wear behaviors of the a-C films on normal load and film thickness was studied in terms of nanomechanical properties, images of scratched surfaces, and numerical results obtained from a previous analytical friction model. The increase of the contact load caused the coefficient of friction to decrease initially to a minimum value and, subsequently, to increase to a maximum value, after which, it either remained constant or decreased slightly. The dominant friction mechanism in the low-load range was adhesion, while both adhesion and plowing mechanisms contributed to the friction behavior in the intermediate- and high-load ranges. Thinner (thicker) a-C films yielded higher (lower) friction coefficients for normal loads less than 50 μN (low-load range) and lower (higher) friction coefficients for normal loads greater than 150 μN (high-load range). Elastic and plastic deformation, microcracking, and delamination of the a-C films occurred, depending on the contact load and film thickness ranges. The reduced load-carrying capacity, relatively low effective hardness (strength) obtained with thinner films, and dominant friction and wear mechanisms at each load range illustrate the film thickness and contact load dependence of the nanotribological properties of the sputtered a-C films.  相似文献   

13.
Two classes of novel lubricants, perfluoropolyethers (PFPE) and ionic liquids (ILs), were deposited on metal film magnetic tapes. The adhesive force and coefficient of friction of lubricated and unlubricated tapes were investigated at the nanoscale with an atomic force microscope (AFM) as a function of various humidity and temperature conditions. Microscale tests with a ball-on-flat tribometer were also performed in order to study the length-scale effects on friction. Wear at ultralow loads was simulated and the lubricant removal mechanism was investigated by monitoring the friction force, surface potential and contact resistance with the AFM. Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) experiments were conducted to determine the chemical species that affect intermolecular bonding and as an aid in interpreting how the lubricant film tribological properties vary with the environmental conditions. Z-TETRAOL, one of the PFPEs, was found to exhibit the lowest adhesion and friction among the lubricant films studied. The ionic liquid 1,1′-(pentane-1,5-diyl)bis(3-hydroxyethyl-1H-imidazolium-1-yl) di[bis(trifluoromethanesulfonyl)imide)] exhibited comparable nanotribological properties with the PFPEs. This is attributed to the presence of hydroxyl groups at its chain ends, which can hydrogen bond with the surface similar to PFPEs.  相似文献   

14.
This article presents measurements of adhesion and friction of perfluoropolyether (PFPE) lubricant films dip-coated on magnetic disks covered with diamond-like carbon (DLC) film. We have developed a custom-built pin-on-disk type micro-tribotester to perform the tribological measurements. The adhesion tests were performed by pulling down/up a 1.5-mm-diameter glass ball on a stationary disk surface, and the friction tests were carried out by sliding the glass ball on a rotating disk surface without changing head-disk interface conditions from the adhesion tests. Experiments were performed for the different kinds of 2- and 6-nm-thick PFPE lubricants (polar: Zdol4000 and Zdol2000; nonpolar: Z03) under lightly loaded and slow sliding conditions to minimize disturbance against the molecular layered structure. The adhesive forces were found to decrease with increasing film thickness in the order of Z03 > Zdol2000 > Zdol4000 (decreasing rate), which closely corresponds to the order of monolayer thickness, and then to saturate to almost the same calculated values. As for the friction forces of 2-nm-thick films, Zdol2000 featured extraordinarily large friction in comparison with Zdol4000 and Z03, while Zdol4000 was slightly larger than Z03. The largest friction of Zdol2000 reveals that the 2-nm-thick Zdol2000 formed a monolayer that served as an immobile layer. With the increase in film thickness, the friction force of Zdol2000 decreased, indicating that extra lubricant molecules served as a mobile layer, while that of Z03 remained unchanged as the lowest value. By extrapolating the loading force versus friction force relationship into a negative loading force region, it is found that the friction force of Z03 tended to zero at zero net load (loading force plus adhesion force), while those for Zdol2000 and Zdol4000 exhibited finite values, indicating formation of an immobile layer, which shows similar characteristics to those of adhesive rubber material. The dewetted surface is found to feature violently changing friction force only at the first stage of sliding, and it then becomes stable after several sliding passes.  相似文献   

15.
High load friction and wear experiments by means of atomic force microscopy were carried out at the surface of highly (0 0 1) oriented vanadium oxide V2O5 thin films deposited on silicon by reactive magnetron sputtering. Microscopic friction coefficient was estimated for wide range of loads. The nature of surface wear due to multiple, high load scanning is presented and discussed.  相似文献   

16.
The tribological performance of hydrogenated diamond-like carbon (DLC) coatings is studied by molecular dynamics simulations employing a screened reactive bond-order potential that has been adjusted to reliably describe bond-breaking under shear. Two types of DLC films are grown by CH2 deposition on an amorphous substrate with 45 and 60 eV impact energy resulting in 45 and 30% H content as well as 50 and 30% sp3 hybridization of the final films, respectively. By combining two equivalent realizations for both impact energies, a hydrogen-depleted and a hydrogen-rich tribo-contact is formed and studied for a realistic sliding speed of 20 m s−1 and loads of 1 and 5 GPa. While the hydrogen-rich system shows a pronounced drop of the friction coefficient for both loads, the hydrogen-depleted system exhibits such kind of running-in for 1 GPa, only. Chemical passivation of the DLC/DLC interface explains this running-in behavior. Fluctuations in the friction coefficient occurring at the higher load can be traced back to a cold welding of the DLC/DLC tribo-surfaces, leading to the formation of a transfer film (transferred from one DLC partner to the other) and the establishment of a new tribo-interface with a low friction coefficient. The presence of a hexadecane lubricant leads to low friction coefficients without any running-in for low loads. At 10 GPa load, the lubricant starts to degenerate resulting in enhanced friction.  相似文献   

17.
《Wear》2007,262(5-6):742-748
Tribological characteristics of ultra-high molecular weight polyethylene (UHMW-PE) disks molded at 130–190 °C were studied. The highest crystallinity was obtained for the sheet molded at 130 °C, but crystallinity decreased with increasing molding temperature. Beyond 150 °C, the resultant crystallinity reached a constant level. The dynamic friction coefficients of these UHMW-PE disks were measured using a ball-on-disk friction tester. The friction coefficient decreased with increasing number of rotations in the early stage of the measurement, and achieved at an equilibrium level, independent of the molding temperature. The steady-state friction coefficient was 0.04 for the disk molded at 130 °C and increased with increasing molding temperature. The disks molded at 150–190 °C always had a steady-state friction coefficient of 0.065. The surface deformation of each disk was evaluated from the observation of the resultant wear track. Analyzing the relationship between the above friction coefficient and width of the wear track enabled us to interpret the tribological mechanism generated in this study.  相似文献   

18.
We study the friction, wear, and aging of a model boundary lubricant, an alkoxy monolayer covalently bonded to a Si(111) surface, using an interfacial force microscope with a spherical diamond probe. The robust alkoxy bond creates a film that effectively lubricates and prevents wear of Si at stresses comparable to those found in microelectromechanical systems devices. Sliding on the monolayer over 50 nm produced friction approximately three times greater than that of sliding over molecular length scales (∼2 nm); this is attributed to deformation dynamics of the experiment. By repeated scanning over the same location, we observed wear on a level that reduces the friction by thinning and/or reordering the monolayer film.  相似文献   

19.
Jia  Zhengfeng  Xia  Yanqiu  Pang  Xianjuan  Hao  Junying 《Tribology Letters》2011,41(1):247-256
Three synthesized benzotriazole-containing borate esters were separately added into poly-alpha-olefin (PAO) as additives, using molybdenum dithiocarbamate (MoDTC) as the comparison. The friction and wear behavior of Ti-DLC and Ti/Al-DLC coating on nitrided AISI-1045 steel sliding against AISI 52100 steel under the lubrication of PAO containing various additives was evaluated using a reciprocating ball-on-disk friction and wear tester. The morphology and chemical feature of the worn surfaces of the DLC coatings were observed and analyzed using a three dimensional (3D) surface profiler, a scanning electron microscope (SEM), and an X-ray photoelectron spectroscope (XPS). Results show that the three kinds of benzotriazole-containing borate esters as additives in PAO had much better tribological properties than MoDTC; the wear resistance of Ti/Al-DLC coating was better than Ti-DLC coating.  相似文献   

20.
By using Green function molecular dynamics method, we systematically study the friction behavior of a single asperity and asperity array over the (1 1 1) surface of single crystal copper. We find that internal plastic behavior (burst of stacking faults, dislocation emission and propagation) is a promising reason for the higher value of static friction coefficient than that of dynamics friction in non-adhesive scratch. For the rough surface, however, the difference between static and dynamic friction coefficients disappear due to the interference between asperities. The interference dramatically increases the friction coefficient by introducing atomic scale plastic features (pile-up atoms, stacking faults, and U-shape dislocation loop).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号