首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
采用差示扫描量热法(DSC)对经过不同温度、不同时间反应后的航空润滑油基础油癸二酸二-2-乙基己酯(DIOS)、50-1-4φ航空润滑油及加入抗氧剂的基础油进行动态和静态氧化试验,通过分析处理热流曲线,分别得到不同油样的起始氧化温度(IOT)和氧化诱导期(OIT),并对添加抗氧剂前后油样的氧化安定性进行评价。结果表明:3种油样的IOT值与OIT值分别处于206~255℃和12~31 min的范围内,且随着初始反应温度的增加和反应时间的延长,油样IOT值与OIT值都呈先减小后增大再减小的总体下降趋势,表明在更高温度、更长时间下反应后,油样的氧化安定性会变差;油品的OIT值变化规律与IOT值的相同,表明采用这2种指标来评价油样的氧化安定性结果基本一致;添加抗氧剂后的基础油油样的IOT值均呈增大趋势,表明该抗氧剂可提升基础油的氧化安定性,而对于成品油50-1-4φ,由于多种添加剂的协同作用效果,相比单一添加抗氧剂,油品的氧化安定性得到了进一步提高。  相似文献   

2.
阮少军 《润滑与密封》2018,43(7):111-115
利用高温氧化加速装置,采用金属Cu和Fe片分别在不同反应温度下对烃类航空润滑油进行催化氧化,探究氧化产物的运动黏度、酸值及倾点的变化规律,并结合GC/MS分析导致油品运动黏度、酸值及倾点变化的作用机制。结果表明:油品的氧化裂解程度越深,Pearson相关系数r值的绝对值就越大,氧化产物的运动黏度、酸值及倾点之间的关联性越强;运动黏度及倾点的衰变主要是热裂解反应引起的,而酸值的增大则主要是油品的热氧化反应引起的。  相似文献   

3.
利用高温氧化模拟装置,研究烃类航空润滑油在添加和不添加金属Fe时,在不同温度下反应油样的外观、黏度以及酸值的变化,并使用GC/MS分析对油样组成结构进行分析。结果表明:高温氧化反应后,相比未添加Fe的油样,添加Fe的油样颜色更深、黏度更小、酸值更高,说明添加金属Fe大大加快了油品的变质。GC/MS分析表明:油品高温氧化过程中不仅产生了大量小分子烷烃、烯烃类物质,还生成了少量醇、酮、酸、酯等化合物,正是由于这些物质的形成,造成了油样颜色、黏度以及酸值的衰变。  相似文献   

4.
为探讨润滑油在高温高压等苛刻工况下的抗泡性能,以某型国产航空润滑油和进口酯类航空润滑油为研究对象,采用高温模拟氧化装置在175~290℃下进行氧化试验,测定不同温度下氧化后油样的100℃运动黏度和酸值,利用GC/MS分析油样氧化组分和主要产物,并分别对高温氧化油样的泡沫特性和空气释放值进行测定。试验结果表明:2种航空润滑油的黏度随着氧化温度的升高先增大后减小,且均在250℃达到黏度的最大值,但进口油由于极性分子间作用力的存在,其黏度值更加稳定;进口油在氧化温度过高时发生水解和热氧化,导致其酸值在高温下急剧增大,因而腐蚀性明显差于国产油;国产油在起泡倾向和空气释放性能方面均比进口油差,这是由于国产油中的PAO分子的表面聚合以及高温氧化条件下表面活性吸附层的形成,均增大了起泡倾向,并延长了空气释放时间,进而导致抗泡性能变差。  相似文献   

5.
为研究高温下金属部件中的铁对航空润滑油高温氧化的影响,用高温氧化釜分别模拟50-1-4Ф航空润滑油在含铁片和不含铁片情况下的高温氧化过程,观察油样的颜色、黏度、酸值的变化,用压力差示扫描量热法测量其氧化诱导期。结果表明,高温氧化对50-1-4Ф航空润滑油高温黏度影响较小,对低温黏度、酸值和氧化诱导期影响明显;铁对该航空润滑油的酸值和氧化诱导期影响较大,含铁的油样酸值和氧化诱导期的变化幅度是不含铁油样的数倍;铁在较高的氧化温度下(250、300℃)对黏度影响明显,但在较低的氧化温度下(180、200℃)对黏度影响小。  相似文献   

6.
通过高温高压反应釜实验模拟发动机实际工况条件,研究不同氧化温度对以聚α-烯烃合成油为基础油、2,6-二叔丁基对甲酚和对,对’-二异辛基二苯胺为抗氧剂的某型航空润滑油理化性能的影响,并根据润滑油高温氧化后产物的结构组成,分析PAO航空润滑油的氧化衰变机制。结果表明:温度越高,该型航空润滑油产生的小分子越多,黏度降低,酸值增大;抗氧剂的加入可以明显减缓油品黏度的衰减过程,并抑制小分子异构烷烃和烯烃的生成;在高温氧化衰变过程中,PAO基润滑油的高温氧化衰变经历了自由基反应历程。  相似文献   

7.
借助高温氧化模拟加速装置,模拟金属存在下聚α-烯烃(PAO)航空润滑油基础油高温工作环境,对比分析添加金属Cu前后油样的外观、黏度和酸值变化,利用GC/MS检测不同温度下油样的微观组成,并根据物质结构分析PAO理化性能变化的原因。结果表明:金属Cu加速了PAO的高温裂解,产生了某些生色化合物,加速了油品的氧化变质,使油品黏度降低,并生成了酸性物质使油品酸值增加;GC/MS分析结果表明,金属Cu的存在会加速PAO的氧化和裂解,产生碳数更少的烃分子,也促进含双键的不饱和烃、含氧化合物等物质的生成,在宏观上使油样运动黏度降低、酸值增大和颜色加深。  相似文献   

8.
对不同温度和反应条件下的癸二酸二-2-乙基己酯(DHS)基础油理化指标进行考察,并采用GC/MS现代分析手段测定油样结构组成,探讨酯类航空润滑油基础油的热氧化衰变规律,从分子水平揭示酯类航空润滑油基础油高温衰变后颜色、黏度和酸值变化的原因。试验结果表明:空气、氧气和抗氧剂N-苯基-α-萘胺(NPAN)对DHS黏度高温衰变影响较小,这是因为油品分子链在高温作用下既发生裂解使黏度低,也会相互聚合使黏度增大;氧气的存在会与自由基生成醇、醛和酸等含氧化合物,使油样酸值急剧增大,添加NPAN后极大地抑制了酸值升高,油样酸值的突变温度升高,表明NPAN在酯类基础油中发挥了较好的抗氧化效果。  相似文献   

9.
为掌握航空润滑油的高温氧化规律,利用高温氧化加速装置分别模拟某型航空润滑油在铜、铁金属催化作用下,在不同温度下的氧化过程,用气相色谱/质谱联用仪(GC/MS)对氧化产物进行定性和定量分析。结果表明:氧化产生的酯类化合物最多;氧化温度为230℃时,油样中开始出现烯烃,温度继续升高烯烃含量增大并且油样中出现醇和酸类物质,230℃可能是该润滑油开始剧烈氧化的温度;添加剂消耗产生的化合物是导致该润滑油酸值增大、颜色加深的主要原因;氧化过程中,部分长链结构的酯变为短链结构,油样中出现小分子的醇、酸等物质,这可能会导致润滑油黏度降低;抗氧剂含量的降低和不安定组分的产生会降低油品氧化安定性,导致氧化诱导期和起始氧化温度降低。  相似文献   

10.
通过金属筛选实验,选定Cu片作为航空润滑油高温氧化实验金属用材。在金属和抗氧剂存在下,模拟航空润滑油基础油PAO和己二酸二异辛酯(DIOA)的高温工作环境,分析反应后2种油样的外观、黏度和酸值变化,并利用傅立叶红外光谱技术(FTIR)分析油品性能衰变的原因。实验结果表明:随温度的升高,PAO和DIOA会发生氧化和裂解,不同程度地出现颜色加深、黏度降低、酸值增大等现象。FTIR分析可知,PAO油样高温衰变的过程中断链产生了大量饱和烃,DIOA油样水解产生酸、醛和醇等含氧化合物,2类油样均检测到O=C-H、C=O和O-H等官能团。高温下,PAO易发生断链,产生碳数更少的烃分子,导致260℃时黏度就出现急剧下降现象,而DIOA具有较好的热稳定性,其黏度骤降出现在300℃左右;酯类油DIOA氧化和裂解易产生羧酸,导致其酸值衰变程度远大于PAO。  相似文献   

11.
为评定某型酯类航空润滑油的氧化安定性能,采用轴承模拟试验装置模拟超高温度工况(200℃以上),对该型酯类润滑油进行不同工况条件下的高温氧化试验,对氧化后的油样黏度进行了测定,使用液相色谱/质谱(LC/MS)以及气相色谱/质谱(GC/MS)对氧化后油样的结构和组成进行分析,并通过PDSC获得氧化后油样的起始氧化温度。结果表明:高温氧化后该型酯类油的黏度明显下降,远低于产品初始值,而随模拟温度的升高,其黏度先增后减,但总体变化幅度很小;在氧化过程中产生的大部分化合物分子量都高于原润滑油分子量;油样氧化产物主要为癸二酸二异辛酯基础油分子断裂后所产生的单酯、双酯类化合物。通过热分析发现,极高的氧化温度(200℃以上)下抗氧剂的消耗以及不安定化合产物的产生,会导致油样的氧化安定性能急剧下降。  相似文献   

12.
利用ASTM D4636标准氧化安定性模拟氧化装置,对国产某型航空润滑油和进口航空润滑油50-1-4Φ在不同温度下进行模拟氧化试验,对比分析氧化后2种润滑油的运动黏度、抗磨性能和承载能力的变化规律。结果表明:在175℃氧化温度以下,2种润滑油的运动黏度均比较稳定,仅随温度小幅增加,可以长期使用;在200℃氧化温度以上,2种润滑油的运动黏度随温度变化幅度较大,均不能长期使用;在超高温度环境中,航空润滑油可能出现黏度下降的情况,将不利于流体润滑油膜的产生,其中国产某型航空润滑油更能适应短时间的超高温环境;氧化作用对2种润滑油的抗磨性能影响不大,氧化后的国产某型航空润滑油抗磨性能略高于50-1-4Ф;氧化作用有利于2种润滑油承载能力的提高,氧化后的国产某型航空润滑油的承载能力比50-1-4Ф更强。  相似文献   

13.
对三羟甲基丙烷复合酯分别进行不同温度与时间下的恒温氧化,检测其氧化后的黏度、黏度指数和酸值,并通过函数拟合得出它们随氧化温度与时间的变化规律;使用PDSC测试被氧化样品的起始氧化温度,并计算活化能、氧化速率常数和氧化半衰期,得到氧化温度与时间对油品后续氧化安定性的影响规律。结果表明:油品黏度与酸值的变化规律均近似logistic函数曲线,即起初增长缓慢,随后迅速增长并达到最快速率,最终速率逐渐下降;黏度与酸值函数的拟合参数与氧化温度密切相关,可用于评价与预测油品的氧化行为;三羟甲基丙烷复合酯经历不同条件的高温氧化后始终具有较高的黏度指数,并且起始氧化温度和活化能均未发生显著变化,表明其氧化后仍有着优异的黏温性能和氧化安定性。  相似文献   

14.
为探究航空液压油氧化安定性变化规律,设计基于金属催化氧化的模拟氧化试验,研究在金属Cu与Fe的催化氧化下,15号航空液压油在不同氧化时间下的外观、黏度以及酸值变化规律,并借助GC/MS对油样组成结构进行分析。结果表明:在长时间氧化下添加金属Cu、Fe的油样颜色、黏度变化更剧烈,氧化后酸值更高,说明在金属催化氧化下,液压油的氧化安定性变差。GC/MS分析表明:在金属作用下,航空液压油长时间氧化后抗氧剂消耗更剧烈,且生成了小分子烷烃以及少量的醇、酮、酸、酯等化合物,造成了油品理化性能的变化以及氧化安定性变差。  相似文献   

15.
利用中红外光谱法能快速测得油品氧化面积的优点,将红外氧化面积与实验室常规酸值测定法测得的润滑油酸值进行相关性分析,提出一种利用红外氧化面积表征润滑油酸值的方法。采用该方法对配制的某航空润滑油新油样及在用油油样进行红外光谱分析和常规酸值分析,选择红外谱图中1 800~1 670 cm-1区域作为测定润滑油酸值的氧化区域,对红外峰面积与标准油和在用油的酸值进行相关性分析,给出回归方程并进行了较正。结果表明,利用傅立叶变换中红外光谱法测定某航空润滑油新油及在用油的酸值是可行的,测定结果是可靠的。  相似文献   

16.
将恒温氧化、PDSC测试及氧化动力学计算相结合,分析氧化温度与时间对双季戊四醇酯黏度、黏度指数和酸值的影响规律,研究双季戊四醇酯经历恒温氧化后起始氧化温度、活化能及氧化速率常数的变化,探讨其对不同温度耐受能力的差异。结果显示:双季戊四醇酯黏度与酸值的变化符合logistic函数,初始阶段增长缓慢,继而迅速升高并达到最快速率,随后速率逐渐下降;180℃以上的氧化会使黏度、黏度指数和酸值发生显著变化,而低于130℃时其变化趋势十分平缓,能满足冷冻机油的工况要求;180℃以上的高温氧化会使油品起始氧化温度降低,但对活化能、氧化速率常数和氧化半衰期影响较小,因此双季戊四醇酯具备较好的高温氧化安定性。  相似文献   

17.
采用高压釜模拟润滑油实际作业环境,研究抗氧剂2,6二叔丁基对甲酚(DBPC)和对,对'-二异辛基二苯胺(DODPA)在高温下对聚α-烯烃(PAO)航空润滑基础油运动黏度的影响,结合FTIR和GC/MS技术,从分子水平分析不同黏度油样的组成成分和结构特征。结果表明:高温裂解是引起PAO黏度衰变的主要原因,油样中所生成的小分子量化合物越多,黏度衰变越严重;抗氧剂的加入可以有效抑制油品黏度的衰减,起到较好的抗氧增效作用,其中DODPA比DBPC表现出相对优异的高温抗氧化能力。采用高压釜模拟润滑油实际作业环境,通过理化分析方法分析润滑油黏度的变化,采用FTIR、GC/MS分析润滑油分子结构的变化,是一种研究在用油的衰变并掌握准确换油期的理想方法。  相似文献   

18.
豆油环氧后和不同链长的脂肪酸反应,生成一系列的改性豆油并对其结构进行表征;考察了不同烷链结构的改性豆油的流变学性能,结果表明所合成的系列改性豆油的粘温性能优良;直链酸链长越长,改性豆油的粘度越低,粘度指数增大;抗磨能力随粘度减小而降低;其中豆油异构丙酯综合性能最佳,具有很高的粘度,可以考虑用来替代国内紧缺的高粘度光亮油以供调配各粘度级别的润滑油.考察了豆油异构丙酯调配的各粘度级别润滑油的流变学性能.结果表明豆油异构丙酯调配的各粘度级别润滑油的倾点(最低可达-50℃)明显低于同级别矿物油,其粘度指数也明显大于同级别矿物油.考察了豆油异构丙酯的氧化稳定性,结果表明其具有很强的氧化稳定性,解决了植物油稳定性差的问题.  相似文献   

19.
针对汽车制造商推荐的民用轿车发动机润滑油换油时间是否科学的问题,以4台民用轿车为对象,进行5组352天以上的行车试验,跟踪采集并检测试验过程中发动机润滑油成分及理化性能变化,研究典型城市运行工况下长期服役的润滑油性能及成分变化规律,在实车试验的基础上探讨推荐换油时间的合理性。结果表明,5组试验中所采用的矿物、半合成及全合成润滑油在达到推荐换油时间(180天)时,润滑油总酸值、运动黏度远未达到现行标准中规定换油值;试验分别进行448、506、387、538及352天后,试验用润滑油总酸值、运动黏度依然未达到现行换油标准,并且保持着较好的氧化安定性及清净分散性能。  相似文献   

20.
李万英 《润滑与密封》2016,41(7):140-142
以我国某型号时速350 km高速动车组齿轮箱为研究对象,结合实际运行工况,计算确定齿轮啮合在弹性流体动压润滑状态下对油品黏度的需求;通过有限元方法模拟计算齿轮箱温升平衡后的温度场,确定油品类型;结合实际运行中环境温度范围,确定油品的低温要求。综合该型号高速动车组齿轮箱的黏度需求、抗高温氧化性能要求及低温要求,确定合适的润滑油类型,为高速铁路列车齿轮油类型的选择及匹配油品的设计提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号