首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
M.V. Bhat  C.M. Patel 《Wear》1981,66(2):189-193
The behaviour of a squeeze film in an inclined porous slider bearing is analysed. Expressions for pressure, load capacity, friction, coefficient of friction and the position of the centre of pressure are obtained. Pressure, load capacity and friction are increased as a result of squeeze. The coefficient of friction is decreased and the centre of pressure is unaffected. An expression for the time-height relation is given.  相似文献   

2.
V.K. Puri  C.M. Patel 《Wear》1982,78(3):279-283
A porous slider bearing with anisotropic permeability and slip velocity is considered. Expressions for the load-carrying capacity, friction, coefficient of friction and the position of the centre of pressure are obtained in integral form. Anisotropic permeability and slip affect these bearing characteristics.  相似文献   

3.
V.K. Puri  C.M. Patel 《Wear》1981,70(2):197-206
The squeeze film behaviour in a porous composite slider bearing is analysed. Expressions for the pressure, the load capacity, the friction and the position of the centre of pressure are obtained. The pressure, load capacity and friction are increased owing to the squeeze and the position of the centre of pressure moves slightly towards the inlet face. An expression for the time-height relation is also obtained. The response time for a composite slider bearing is greater than that for an inclined slider bearing.  相似文献   

4.
K.C. Patel  J.L. Gupta 《Wear》1983,85(3):309-317
An inclined porous slider bearing is analysed with slip velocity at the porous boundary considered. The expressions for dimensionless loadcarrying capacity, friction and the centre of pressure are obtained in the form of integrals. Minimization of the slip parameter is essential to increase the load capacity.  相似文献   

5.
J.L. Gupta  M.V. Bhat 《Wear》1979,55(2):359-367
A hydromagnetic inclined porous slider bearing with a transverse magnetic field is analysed. Expressions for various bearing characteristics are obtained for large and small Hartmann numbers. The dimensionless load capacity, friction and centre of pressure are computed for large Hartmann numbers in the open-circuit case; the load capacity and friction increase markedly with increasing Hartmann number.  相似文献   

6.
Porous-bearing performance can significantly benefit from optimally designing the shape of the bearing. The present paper introduces an approach for designing the optimum shape of a slider bearing using an inverse method. The proposed approach utilises a sequential quadratic programming algorithm to minimise friction subject to load and centre of pressure requirements specified by the designer. Bearing characteristics, such as friction, load and centre of pressure, are obtained by solving a modified Reynolds-type equation numerically using the finite difference method. The modified Reynolds equation is derived on the basis of Stokes' microcontinuum theory of couple stress fluids, which is used to study non-Newtonian lubricants. Results show that the optimisation approach reduces the coefficient of friction. In addition, the dimensionless slip parameter is shown to be the most significant parameter affecting optimal friction. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
This paper utilises a thermohydrodynamic model of bearing to optimise the shape of slider bearing. Friction is minimised subject to load and centre of pressure requirements using a sequential quadratic programming algorithm. A generalised Reynolds equation is solved simultaneously with an energy equation using the finite volume method to obtain bearing characteristics, such as friction, load and centre of pressure. Results show that the coefficient of friction is reduced by the optimisation approach. Results also show that larger temperature–viscosity coefficient and inlet viscosity tend to yield smaller optimal friction, whereas larger thermal conductivity tends to yield larger optimal friction. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
M. Singh 《Wear》1982,78(3):263-271
The effects of an applied azimuthal magnetic field and a porous facing of variable thickness on an inclined slider bearing with an electrically conducting lubricant are theoretically investigated. Expressions for pressure, load capacity, friction and the position for the centre of pressure are derived for both open-circuit and short-circuit cases. The case when the magnetic field is absent is also examined.  相似文献   

9.
In this paper the effect of surface roughness on the performance of curved pivoted slider bearings is studied. A more general type of surface roughness is mathematically modelled by a stochastic random variable with nonzero mean, variance and skewness. The averaged modified Reynolds type equation is derived on the basis of Stokes microcontinuum theory for couple stress fluids. The closed‐form expressions for the mean pressure, load‐carrying capacity, frictional force and the centre of pressure are obtained. Numerical computations show that the performance of the slider bearing is improved by the use of lubricants with additives (couple stress fluid) as compared to Newtonian lubricants. Further, it is observed that the negatively skewed surface roughness increases the load‐carrying capacity and frictional force and reduces the coefficient of friction, whereas the positively skewed surface roughness on the bearing surface adversely affects the performance of the pivoted slider bearings. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
An analysis of micropolar and power law fluid–lubricated partial slip–partial slip texture slider and journal bearings is presented. The nondimensional pressure and shear stress expressions for a partial slip texture configuration are analyzed using narrow groove theory. The parameters used in the analysis are nondimensional partial slip length, nondimensional partial slip–partial slip texture length, nondimensional depth of recess, ratio of land with slip to recess, nondimensional slip coefficient, coupling number; ratio of characteristic length to film gap, and power law index. A partial slip configuration with a higher slip coefficient yields an improvement in load capacity and reduction in coefficient of friction compared to a partial slip texture configuration for micropolar and power law shear thinning (pseudoplastic) fluid-lubricated slider and journal bearings.  相似文献   

11.
A general theoretical study of an infinitely wide lubricated slider bearing is presented, considering the lubricant to be an incompressible, isothermal, power law fluid. A set of algebraic equations is developed to obtain the pressure gradient for any value of the power law index. To illustrate the mathematical development, the set of equations is used to calculate the pressure gradient for two special forms of slider bearings, viz., inclined and parabolic slider bearings. In these two cases, the variation of pressure, load capacity, coefficient of friction, etc. for a range of fluid- and bearing-parameters is presented. In order to obtain optimum load capacity for an inclined and a parabolic slider bearing, the variations of load capacity, coefficient of friction, etc., with respect to the simultaneous changes of the inlet–oulet film height ratio and of the power law index of lubricants are also analysed. The results are presented both numerically and graphically. The results reveal that in the cases of an inclined and a parabolic slider bearings the inlet–outlet film height ratio for the optimum load capacity depends on the power law index of lubricants. Further, for each value of power law index, there exists a value of inlet–outlet film height ratio for which the frictional coefficient is minimum.  相似文献   

12.
陈阳  张功学  吴垚 《润滑与密封》2023,48(10):157-164
多叶动压气体滑动轴承因其结构简单、摩擦阻力低、旋转精度高和无环境污染等优点,在高速离心分离机、空气压缩机和透平膨胀机等旋转机械中应用广泛。为探究多叶动压气体滑动轴承的静态性能,通过数学变换将三叶动压轴承的气体润滑Reynolds方程转化为标准偏微分方程形式,利用有限差分法和超松弛迭代法进行数值求解,研究气膜厚度和气膜压力分布、承载力、摩擦因数和质量流量等静态性能,随偏心率、预负荷系数、轴承数、长径比及瓦块分布位置的变化规律。结果表明:三叶轴承的承载力和轴颈表面摩擦因数随偏心率和长径比的增加而增加,而偏位角和质量流量随偏心率和预负荷系数的增加则呈现出相反的变化趋势;随着轴承数和预负荷系数的增大,承载力和摩擦因数显著提高,偏位角和质量流量则逐渐减小;瓦块分布位置对三叶动压气体滑动轴承的静态性能影响显著,其中瓦上承载方式的承载力、偏位角和质量流量明显高于瓦间承载方式。  相似文献   

13.
Abstract

This paper describes the theoretical analysis of the effect of micropolar fluid on the lubrication characteristics of porous inclined stepped composite bearing. The lubricant with additives in the film region and also in the porous region is modelled as Eringen's micropolar fluid, which is characterised by the presence of suspended rigid particles with microstructures. The generalised Reynolds type equation is derived for the most general porous bearing configuration (porous composite bearings) lubricated with micropolar fluid. The closed form expressions are obtained for the fluid film pressure, load carrying capacity, frictional force and coefficient of friction. These expressions can be utilised to obtain the performance characteristics of four different bearing systems, namely, porous plane inclined slider, porous composite tapered land bearing, porous stepped bearing and composite porous tapered concave bearing. It is observed that the micropolar fluid lubricants provide an increased load carrying capacity and decreased coefficient of friction as compared to the corresponding Newtonian case.  相似文献   

14.
《Wear》2004,256(1-2):73-80
A model of fractional coverage in reciprocating sliding contact is developed. The sliding velocity profiles, the contact pressure distribution, the lengths of the slider or wear-track, and the periods of dwell where the slider is held stationary at the turn around locations are all variables. The model is evaluated for the condition of a constant fully reversing sliding speed with a uniform contact pressure and dwell. Plots are presented for surface area fractional coverage as a function of position illustrating the effects of individually varying vapor pressure, velocity, load, and dwell. The prediction of a steady state friction coefficient dependence on position is discussed, as well as the locations of maximum and minimum friction coefficient. The model predicts coverage to be enhanced by decreasing loads, decreasing sliding speeds, increasing gas pressures, and increasing periods of dwell.  相似文献   

15.
In this paper, the effect of surface roughness on the performance characteristic of porous inclined stepped composite bearings is studied. A generalised form of surface roughness is mathematically modelled by a stochastic random variable with non‐zero mean, variance and skewness. The generalised average Reynolds‐type equation is derived for the rough porous inclined stepped composite bearings with micropolar fluid. The closed‐form expressions are obtained for the fluid film pressure, load‐carrying capacity and frictional force. The results are presented for three different types of bearing system. The numerical computations of the results show that the negatively skewed surface roughness pattern increases fluid film pressure and load‐carrying capacity and decreases the coefficient of friction, whereas adverse effects were found for the positively skewed surface roughness pattern. Further, the rough porous inclined stepped composite bearing provides the largest load‐carrying capacity and the least coefficient of friction as compared with the porous plane slider and porous composite tapered concave bearings. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Boundary slip as well as surface texturing is an effective method to improve the tribological performance of lubricated mechanical components. This article analyzes the combined effect of single texturing (pocketing) and wall slip on pressure that strongly related to the load-carrying capacity of slider bearing. The modified Reynolds equation for lubrication with non-Newtonian power-law fluid is proposed. The equation was solved numerically using a finite difference equation obtained by means of the micro-control volume approach. Further, numerical computations for slider bearing with several power-law indexes were compared with the presence of the pocket and slip. The numerical results showed that the characteristic of non-Newtonian is similar to Newtonian fluid with respect to hydrodynamic pressure distribution. The maximum load support is achieved when the pocket depth is equal to the film thickness.  相似文献   

17.
为研究不同的滑移情况对圆柱形凹坑织构滑动轴承摩擦力的影响,建立含有圆柱形凹坑织构的滑动轴承在不同界面滑移状态下的摩擦力计算模型,探究影响织构化滑动轴承摩擦力的参数,并借助ANSYS分析不同滑移情况下界面滑移对圆柱形凹坑织构滑动轴承摩擦力的影响规律。结果表明:织构化滑动轴承的摩擦力主要是由轴颈线速度、油膜滑移比、轴承的进出油口压力、织构处油膜压力、织构深度、油膜厚度和承载力决定;不同滑移情况下织构模型的摩擦力均小于无织构模型;且在上下表面均滑移时,圆柱形凹坑织构在出口位置时表现出最优的承载和减摩效果;适当地增加圆柱形凹坑织构的深度可以改善模型的摩擦性能,但是过深的凹坑织构并不能发挥出其性能。  相似文献   

18.
P.R.K. Murti 《Wear》1974,28(1):131-134
An infinitely wide, porous slider bearing press-fitted into the housing and working with a full film of lubricant is analysed. The permeability of the bearing material reduces the load capacity and increases the friction in the bearing.  相似文献   

19.
Slider bearings are used in many applications. An increase in the load support may allow for saving of energy. In this work, in order to enhance the load support and decrease the friction force, a combined textured surface bearing using boundary slip is discussed. A modified Reynolds equation with slip is adopted. With the main goal of evaluating the effects of slip and texture, a parametric analysis is performed. For the given operating conditions, texturing features as well as slip pattern are analysed in detail. The numerical analysis is undertaken under the condition of different gap ratio values and the slip-textured area. The results show that combined techniques of slip and texture have a significant effect on the improvement of the tribological performance of bearing, that is, a high load support but low friction force. The gap ratio of the bearing is shown to have a significant effect on the lubrication behaviour. It is found that even with a smallest gap ratio (parallel gap), a high load support can be produced. However, it is also shown that the gap ratio appears to contribute to the generated friction force and the volume flow rate more than the boundary slip. Further analysis indicates that the optimum slip-text zones for certain gap ratio are highlighted. These findings may provide references for designing hydrodynamic-textured slider bearing considering boundary slip.  相似文献   

20.
针对UHMWPE基高分子复合材料水润滑轴承的润滑特性开展研究。采用双向流固耦合算法研究弹性模量和泊松比等材料参数以及转速、负载等工况参数对水润滑轴承偏心率、最大水膜压力、轴承最大变形量、最小水膜厚度、摩擦因数等润滑特性的影响。基于改性UHMWPE高分子复合材料轴承的试验,验证了仿真方法的正确性。研究表明:计入弹性变形的流固耦合算法在研究高分子复合材料轴承性能方面具有更高的精度;随轴瓦材料弹性模量和泊松比的增大,轴承承载力逐渐增大、弹性变形量逐渐减小;随负载增大,轴承最大水膜压力和最大变形量基本呈线性增长;随转速增大,轴承最大水膜压力和轴承最大变形量显著减小;对于高分子复合材料轴承,低速、重载工况下不计入弹性变形的算法误差更大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号