首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
采用光栅相位法的三维人体测量系统设计   总被引:2,自引:0,他引:2  
依据相移法开发出便携式三维人体扫描仪,用于实现快速三维人体重建.阐述了光栅相位法测量三维物体的工作机理.设计出光学投影系统、相移装置及图像采集与处理模块实现人体三维测量功能.利用单片机C8051 F340搭建硬件控制平台并开发了相应的控制软件,利用VC++编制上位机程序控制三维测量系统,完成三维人体光栅图像获取及图像处理.人体模型测量实验表明:所设计的三维人体测量仪可在100ms内获取4幅变形光栅图像,经解相处理生成三维点云,通过曲面重构获取完整人体模型.测量仪具有接口方便、体积小、操作方便、测量速度快、精度高的优点,满足快速获取三维人体信息及模型重建的要求.  相似文献   

2.
光切法是一种三维曲面非接触测量方法,具有测量速度快,成本低,系统组成灵活等优点.介绍了如何将光切法用于脚型测量以及测量系统的设计、组成、扫描原理、数学模型、图像预处理等问题,提出了采用对称放置的双CCD技术.实验结果表明该系统具有良好的实用价值.  相似文献   

3.
根据投影栅相移法原理开发三维人体扫描仪,本文介绍了相位法的测量原理,设计出光学投影系统、相移机构及图像采集与处理模块构建三维人体测量系统.利用16位单片机搭建硬件控制平台并开发了相应的控制软件,利用VC++设计点云获取与数据处理模块.人体模型测量实验表明:该设计完全满足三维人体测量的需求,仪器具有体积小、操作方便、测量速度快、精度高等优点,且基于USB接口进行数据通信,具有通用性和移动性.  相似文献   

4.
用莫尔测偏法在线快速检测非球表面形貌   总被引:3,自引:0,他引:3  
介绍了非球表面三维形貌检测技术的新方法--相移莫尔测偏法的测量原理,图像评价方法和测量装置,详细说明了测量装置的光路和相移器的设计原理及方法,对测量误差的来源进行了分析,为了检验该技术测量非线表面的精度,速度和稳定性,干涉法对同一非线表面进行了光测量比较,结果表明,该技术是一种测量精度,抗干扰能力强,稳定性高且速度快的在线检测方法。  相似文献   

5.
基于结构光的动态物体三维面形测量对航空航天、能源和汽车等领域的科学研究与工程应用具有重要作用。然而现有测量设备单次测量时间过长,难以实现对动态物体三维面形的测量,其中主要的难点在于图像高速同步投影与采集。提出了一种图像精确同步高速投影与采集的方法,该方法通过实验测定出数字微镜翻转延时和触发曝光延时,设计了帧触发信号、数字微镜翻转、LED光源点亮和相机曝光之间耦合工作的精确时序,从而实现了220帧/秒图像的精确投影与采集,为动态物体三维面形测量设备的开发提供了良好的技术基础。  相似文献   

6.
基于数字图像处理技术和MATLAB软件设计了微电极自动测量系统。对采集到的电极图片进行图像预处理、图像分割及尺寸测量。测量用电化学腐蚀制备的微电极,结果表明系统可以测量圆柱型与球头型两种电极的直径尺寸以及同轴度误差,系统测量尺寸值与显微镜下人工检测的尺寸值相对误差在4%以内,表明该系统有测量精度高、检测速度快等特点,能够满足微电极尺寸测量的要求。  相似文献   

7.
针对微型机电系统(MEMS)的三维测量,显微镜或光学轮廓干涉仪等传统方法存在显微测量精度低、设备成本高等问题,且当结构含有较多断裂面时,解包裹算法效果欠佳。本文提出一种基于多图像融合的MEMS显微三维测量方法。不同于多角度显微三维测量方法,本研究首先利用单目显微镜,通过单一轴向移动获取一系列测量目标深度信息的单一角度图像,并利用去雾算法对图像进行预处理,实现了去噪和有效信息提取的目的;然后通过聚焦测度算法获取待测对象的深度信息;最后利用数据处理软件进行三维拟合。基于上述原理,本文以焦平面阵列(FPA)作为待测目标进行了测量实验。本文提出的三维测量方法和图像处理算法可获得更准确的FPA形貌,可清晰显示反射面与支腿部分及反射面上的释放孔,测得FPA的支腿长度为110.6μm,每个反射面的像元尺寸为120.8μm×70.8μm,与设计值基本吻合,解决了断裂面难以测量的问题,同时降低了微结构测量的难度和成本。单目显微镜单向移动的多图像融合测量技术对MEMS的三维形貌测量具有重要意义,去雾算法在图像融合与三维测量的图像处理也有很好的应用价值。  相似文献   

8.
刘晨  金施群 《光学精密工程》2008,16(11):2268-2273
三维图像拼接技术是实现大型物体形貌测量的关键技术。本文在图像控制点约束的基础上,提出了一种实现三维图像拼接的新方法,即将一伪随机空间编码投射到一大型物体表面,然后用CCD在不同视角拍摄不同视场中的物体,利用重叠区域相同的某一窗口特征点进行配准,采用四元组法求取坐标转换矩阵,从而实现大范围自由曲面三维形貌的测量。实验结果表明:基于空间编码的图像拼接新方法,可以实现大尺度三维面形的测量。  相似文献   

9.
在汽车车型开发设计过程中,如何获得汽车车身的三维数字化信息是最重要的工作。文中讨论了一种基于数字摄影原理的三维测量技术,此测量方法精度高、速度快。  相似文献   

10.
基于数字图像处理技术和MATLAB软件设计了微电极自动测量系统。对采集到的电极图片进行图像预处理、图像分割及尺寸测量。测量用电化学腐蚀制备的微电极,结果表明系统可以测量圆柱型与球头型两种电极的直径尺寸以及同轴度误差,系统测量尺寸值与显微镜下人工检测的尺寸值相对误差在4%以内,表明该系统有测量精度高、检测速度快等特点,能够满足微电极尺寸测量的要求。  相似文献   

11.
热轧螺纹钢在线图象检测技术的研究   总被引:1,自引:0,他引:1  
本文介绍了利用计算机图象系统对具有复杂轮廓的热轧螺纹钢进行在线检测的技术。提出了用可控频闪光源照明和面阵CCD成象方式获取高速运动体的清晰图象,设计了新的图象处理算法,能同时给出热轧螺纹钢的多个参数。实验证明测量具有高的精度,可有效实现螺纹钢的在线检测。  相似文献   

12.
重心算法确定CCD像点位置的硬件实现   总被引:5,自引:0,他引:5  
重心法是一种高精度的CCD像点位置提取算法,但由于需要处理的数据量很大,一般用硬件很难实现高采样率和实时性。在CCD光电精密在线测量系统的数据采集处理中,采用高速A/D和DSP芯片设计CCD测厚系统的硬件处理电路,给出了详细的硬件处理电路和软件设计方法,用硬件实现了对CCD信号的细分和重心算法处理,解决了一般情况下系统无法做到的高采样率和实时性问题,大大提高了系统的测量精度和实时性。  相似文献   

13.
基于E-SPCM的直线电机动子位置高精度测量方法研究   总被引:1,自引:0,他引:1  
针对直线电机动子位置测量,引入一种基于扩展采样相位相关法(E-SPCM)的亚像素位移图像检测方法,以提高测量精度和抗干扰性。首先建立了直线电机位置检测系统,通过高速相机实时采集条纹图像序列;其次对条纹图像进行边缘特征提取,利用相位相关得到相邻条纹图像的互功率谱,即动子位置的整像素位移;进而对整像素邻域的互功率谱进行上采样相位相关计算,实现高精度的亚像素位移测量,进一步由系统标定得到实际位移值。对比传统相位相关算法,所采用的方法能够提高测量精度且有很好的噪声抑制性能,最后搭建了实验检测平台,验证了算法的有效性。  相似文献   

14.
基于光栅的快速精确图像拼接   总被引:6,自引:4,他引:6  
为了提高IC芯片视觉检测中图像拼接的速度和精度,提出一种基于精密光栅运动系统的快速精确图像拼接技术。提出自标定技术解决了传统标定受标准件加工尺寸精度和光强影响的问题,提高了标定的准确度并降低了成本。在准确标定基础上,建立了基于光栅精确定位的拼接模型。实验表明,该方法拼接精度高,拼接平均误差在0.4 μm以内,2 σ为0.872 μm,达到亚像素级精度,而且拼接速度快,两幅图像拼接时间约为10 ms。  相似文献   

15.
分析了琴弦的亥姆霍兹运动,设计了一个基于高速摄影的非接触式光学测量系统,用于测量真实小提琴上琴弦的振动。通过特殊的光路设计和在琴弦上设置标定点,以7 000 frame/s的速度和336×480的图像分辨率拍摄了拉弦和拨弦时琴弦上标定点的三维振动形态。采用圆形霍夫变换图像处理算法、奇异值分解算法和自动批处理,对记录的大量序列图像进行处理,提取了弦振动的位移和轨迹等数据。实验结果表明,该测量系统能够精确跟踪小提琴琴弦的振动状态和包络轨迹,振动位移曲线的图像处理精确度达到0.03 mm。该系统为进一步研究提琴琴弦的振动机理和建立精确的琴弦振动理论模型提供了一种有效的实验方法。  相似文献   

16.
为了满足计算机视觉标定与精密测量对图像边缘定位的精确度高和抗噪性强的要求,提出一种基于Franklin矩的亚像素级图像边缘检测算法。首先,建立亚像素边缘模型,利用各级Franklin矩的卷积来提取图像边缘点的细节特征;然后,依据Franklin矩的旋转不变性原理,分析图像边缘旋转至垂直方向后各级Franklin矩之间的关系,从而确定图像中亚像素边缘的关键参数;最后,根据改进的边缘判断条件,确定图像中的实际亚像素边缘点。大量实验结果表明,与基于Zernike矩的亚像素级算法、基于小波变换与Zernike矩结合的亚像素级算法、基于Roberts算子与Zernike矩结合的亚像素级算法相比,本文提出的基于Franklin矩的亚像素级图像边缘检测算法速度更快,精度更高且抗噪性强,更好地满足了对于图像边缘定位稳定可靠及高精度测量的要求。  相似文献   

17.
基于SVD的直线电机动子位置的高精度测量方法   总被引:1,自引:0,他引:1       下载免费PDF全文
针对直线电机动子位置测量的高精度和实时性要求,提出了一种基于奇异值分解(SVD)相位相关算法的高精度图像测量方法。通过直线电机动子上的高速相机采集相邻栅栏图像,采用单行抽样栅栏条纹数据,再利用相位相关技术得到相邻栅栏图像的相位相关矩阵,进而利用SVD得到水平位移相位矢量。通过相位解缠算法和最小二乘法线性拟合得到二幅栅栏图像的亚像素位移量,将相邻栅栏条纹的像素位移值和动子实际位移进行标定,结果用于直线电机动子位置测量系统标定。并且进行傅里叶变换前采用Hanning窗抑制频谱泄露,提高匹配精度。实验结果表明,该直线电机动子位置的亚像素测量方法可以满足实时性和高精度测量要求。  相似文献   

18.
针对列车制动防滑系统的速度测量在测量精度和实时性两方面的要求,介绍了一种可变测速时区的速度测量方法.与传统测速方法相比,消除了测速齿轮加工偏差带来的测量误差,提高了测量精度,而且能将高、低速的测量统一于同一个计算公式,编程简单可靠;采用数字信号处理器(DSP)实现该测速功能,提高了速度和减速度的运算速度,满足了防滑控制的实时性要求.  相似文献   

19.
为解决传统工业测量中,齿轮参数尺寸测量方法过于繁琐的问题,利用数字图像处理技术对其进行检测,提出了一种基于圆投影分割的齿轮参数尺寸检测方法。该方法首先通过图像预处理得到细化的齿轮轮廓,使用改进随机采样算法找到齿轮中心;然后利用轮廓点和图像中心点连线与所建立的图像坐标系正向X轴所成角度和两点距离的映射关系,建立新的极坐标系,并对齿轮进行圆分割,记录新坐标系中峰值点个数和峰值点纵坐标,这2个参数分别对应齿轮齿数和齿顶圆半径;最后利用齿顶圆半径与齿数、模数之间的关系式,求出模数,从而求出齿轮其他尺寸。实验结果表明,用该方法检测齿轮参数尺寸,检测速度快、精确度高,具有较高的实用价值。  相似文献   

20.
The image reconstruction of the electrical capacitance tomography (ECT) is an ill-posed and sparse problem. In order to increase the accuracy and speed of the image reconstruction, this paper proposes a new reconstruction algorithm which is based on the extreme learning machine (ELM) with the Landweber iteration method. Firstly, a nonlinear mapping model is established between the pixel gray-scale values and the interelectrode capacitances by using the ELM which has a good learning ability and high speed. Secondly, the Landweber iteration method, which has a good performance in convergence and stability, is applied to calculate the output weight matrix of ELM. Finally, a convergence and stable mapping model of ELM with the Landweber iteration algorithm (L-ELM) for ECT image reconstruction is trained on Matlab platform. Both simulation and measurement tests are carried out to evaluate and analyze the proposed method. Experimental results indicate that the proposed algorithm has good generalization ability and high image reconstruction quality which are better than those of conventional ELM algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号