首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 162 毫秒
1.
目的 使用高光谱成像技术实现对芒果轻微损伤的无损识别。方法 在可见光-近红外波长范围内采集完好芒果和损伤芒果的高光谱图像, 并提取相应的感兴趣区域(regions of interest, ROI)获得样本高光谱数据。经过多种预处理方法比较, 选择光谱预处理方法。使用竞争性自适应重加权算法(competitive adaptive reweighted sampling, CARS)和连续投影算法(successive projections algorithm, SPA)分别对预处理后的光谱提取特征波长, 并分别建立了多元线型回归(multiple linear regression, MLR)模型和偏最小二乘回归(partial least squares regression, PLSR)模型。结果 选择多元散射校正(multiplicative scatter correction, MSC)作为光谱预处理方法。针对芒果轻微损伤识别, CARS-MLR模型识别效果最好, 其校正集相关系数为0.881, 预测集相关系数为0.821, 校正集均方根误差(calibration set root mean square error, RMSEC)为0.146, 预测集均方根误差(prediction set root mean square error, RMSEP)为0.236, 准确率为97.14%。结论 利用高光谱成像技术可以实现对芒果表面轻微损伤进行有效鉴别。  相似文献   

2.
目的建立可见-近红外光谱法快速无损检测生鲜紫薯的熟化黏度和甜度,并对其食味品质进行评价。方法以生鲜紫薯为研究对象,用竞争性自适应加权算法(competitive adaptibe reweighted sampling,CARS)筛选出生鲜紫薯预处理后的光谱数据的特征波长,再用偏最小二乘法(partial least square,regression,PLS)建立了生鲜紫薯熟化峰值扭矩和可溶性糖含量的定量预测模型。另外,选取12个生鲜紫薯根据划分分值区间法对紫薯食味品质进行评价。结果生鲜紫薯峰值扭矩模型预测集的相关系数r为0.9195,均方根误差(root mean square error of prediction,RMSEP)为0.0526 Nm;可溶性糖含量模型的预测集的相关系数r为0.9515,RMSEP为0.3100 mg/g。结论基于可见-近红外光谱技术可以对生鲜紫薯食味品质进行初步快速无损评价,为鲜食性紫薯品质评价提供理论参考。  相似文献   

3.
目的 利用中红外光谱技术实现对煎炸油极性组分的快速检测。方法 根据SPXY法对煎炸油中红外光谱数据进行样本划分,从而得到校正集和预测集。采用SG+一阶导数预处理手段,利用竞争自适应重加权算法(competitive adaptive reweighted sampling, CARS)进行特征提取,建立煎炸油极性组分含量的偏最小二乘回归(partial least squares regression, PLSR)预测模型,并利用误差反向传播算法(error back proragation, BP)对模型进行优化。结果 BP神经网络法建立的模型校正集决定系数(coefficient of determination, R2)为0.8073,校正集均方根误差(root mean square error of calibration,RMSEC)为0.0325,预测集R2为0.7665,预测集均方根误差(root mean square error of prediction, RMSEP)为0.0443。结果表明,经BP神经网络算法优化后,均方根误差明显减小,提高了预测模型的准确性。结论 结合BP神经网络算法的中红外光谱技术是一种检测煎炸油极性组分的有效方法,为食用油油品品质的快速检测提供理论指导和技术支撑。  相似文献   

4.
为得到可靠的小麦粉中面筋含量定量分析模型,基于光谱预处理及模拟退火算法(simulated annealing algorithm,SAA)对近红外光谱(near infrared spectroscopy,NIR)进行优化处理。偏最小二乘(partial least squares,PLS)回归用于建立预测模型,以决定系数R2、校正均方根误差(root mean square error of calibration,RMSEC)、预测均方根误差(root mean square error of prediction,RMSEP)为指标,对比在不同光谱预处理条件下建立的回归模型与光谱预处理结合模拟退火算法优化处理条件下的回归模型。结果表明光谱预处理结合SAA-PLS模型能够有效提高模型的稳定性和预测能力,将R2从0.763?7提高到0.949?1、RMSEC从1.371?2降低到0.589?8、RMSEP从1.450?2降低到0.534?1。结果说明,光谱预处理结合模拟退火算法对光谱进行优化处理是可行的,模型预测能力和稳定性均优于未处理模型和仅进行光谱预处理的模型。  相似文献   

5.
窦颖  孙晓荣  刘翠玲  肖爽 《食品科学》2016,37(12):208-211
模拟退火算法(simulated annealing algorithm,SAA)是一种随机搜索、全局优化算法,为提高近红外光谱检测面粉品质模型的准确度与稳健性,实验提出基于SAA优化波长,再结合偏最小二乘(partial least squares,PLS)法建模预测的定量模型,并对SAA中冷却进度表参数设置进行对比分析。实验依据面粉中灰分含量梯度,随机选取126 份样本的近红外光谱建立SAA-PLS模型。结果发现,SAA从2 074 个波数优选出70 个波数,结合PLS建立的定量模型相关系数为0.976 0,交互验证均方根误差(root mean square error of cross validation,RMSECV)为0.022,预测均方根误差(root mean square error of prediction,RMSEP)为0.030 1,全谱建立的PLS模型相关系数为0.778 5,RMSECV为0.066 6,RMSEP为0.076 8。结果表明,基于SAA优化特征谱区,建立灰分定量模型是可行的,且准确度与稳健性明显优于全谱定量分析模型。  相似文献   

6.
采用近红外高光谱成像技术结合化学计量学方法建立注胶肉的快速无损检测模型。首先通过近红外高光谱成像系统获取含有不同浓度梯度卡拉胶的猪里脊肉高光谱图像,然后提取图像中的光谱数据,使用偏最小二乘法(Partial least square,PLS)探究光谱信息与不同掺假比例卡拉胶之间的定量关系。结果表明全波段光谱(900~1700 nm)所构建的PLS校正集模型均方根误差(Root mean square error,RMSE)为1.74%,预测模型RMSE为3.16%。表明基于全波段所建立的PLS模型具有较优的预测性能。利用连续投影算法(Successive projection algorithm,SPA)筛选获得11个特征波长,并优化全波长PLS模型,将预测集样品带入,以验证模型的预测效果,结果表明SPA算法结合PLS建模方法所建立的模型预测效果更优,预测集相关系数(RP)为0.93,均方根误差(Root mean square error of prediction,RMSEP)为3.51%,预测偏差(Residual predictive deviation,RPD)为2.66。试验表明利用高光谱成像技术可实现对注胶猪肉的快速无损检测。  相似文献   

7.
为实现甜叶菊中绿原酸含量的快速检测,该研究利用近红外光谱技术结合偏最小二乘法对甜叶菊绿原酸含量的光谱数据进行了近红外模型分析。结果表明,采用多元散射校正(multiplicative scatter correction, MSC)+Savitzky-Golay卷积平滑预处理算法和无信息变量消除法(uniformative variable elimination, UVE)特征波长选择算法,绿原酸含量近红外模型的性能最好。该模型的交互验证相关系数(correlation coefficient in cross validation,RCV)和交互验证残差均方根(root mean square error of cross validation, RMSECV)分别为0.945 3和0.263 1;验证集相关系数(correlation coefficient in validation,RP)和验证集残差均方根(root mean square error of prediction, RMSEP)分别为0.952 1和0.247 2。...  相似文献   

8.
采用近红外高光谱成像技术(900~1700 nm)结合线性回归算法对牛肉掺假快速无损检测。将鸡肉糜掺入牛肉糜中制备牛肉掺假样品,掺假比例为2%~98%(w/w),掺假间隔为2%。采集掺假样品的光谱图像,提取光谱数据,并利用偏最小二乘回归(Partial least squares regression,PLSR)和多元线性回归(Multiple linear regression,MLR)算法建立掺假样品的定量预测模型。为了减少高维共线性问题,提高模型运算效率,分别采用PLS-β系数法、逐步回归法(Stepwise)和连续投影算法(Successive projection algorithm,SPA)筛选最优波长建立优化预测模型。结果表明,基于SPA算法结合MLR建模方法得到的掺假牛肉预测模型,其预测效果最优,校正集决定系数(RC2)和均方根误差(Root mean square error of calibration,RMSEC)分别为0.99和3.23%,验证集的决定系数(RP2)和均方根误差(Root mean square error of prediction)RMSEP分别为0.97和5.31%,预测偏差(Residual predictive deviation,RPD)为6.82。综上,近红外高光谱成像技术结合线性回归算法可以实现对掺假牛肉的快速无损定量检测。  相似文献   

9.
采用短波近红外光谱仪器在线检测保健酒调配液生产线上产品的酒精度。通过使用一阶倒数(First derivative,FD)和平滑处理(Norris derivative filter,ND),对近红外图谱进行预处理,使用偏最小二乘法(Partial least square,PLS)建立了酒精度检测近红外模型。模型的校正集均方根误差(Root mean square error of calibration,RMSEC)为0.737,交互验证相关系数为0.9189;预测集均方根误差(Root mean square error of prediction,RMSEP)为0.788,交互验证相关系数为0.9425。实验数据显示,近红外计算酒精度数值与标准法测量数值相对偏差主要集中在±2%之间,该方法可以满足生产过程中在线检测酒精度的要求。  相似文献   

10.
摘 要:目的 建立一种基于近红外光谱技术快速测定甘薯多糖的方法。方法 通过采集来自不同地区的74个甘薯及甘薯干的近红外光谱图,对异常样本进行剔除与回收后随机选择其中56种作为校正集,11种作为验证集。通过一阶导数、二阶导数、多元散射校正(multiplicative signal correction,MSC)、标准正态变量变换(standard normal variate,SNV)等组合预处理方式对原始光谱进行处理,比较多元线性回归(stepwise multiple linear regression,SMLR)、主成分回归(principal component regression,PCR)和偏最小二乘法(partial least squares,PLS)三种方法建立的模型结果,进一步选择波段确定最佳甘薯多糖含量测定方法。结果 PLS建立的模型整体精确度和稳定性最佳,最优模型的预处理方式为一阶导数处理,该模型的最佳波段为全波段范围,校正集均方根误差(root mean square error of calibration set,RMSEC)为相关系数0.496,校正集相关系数(calibration set correlation coefficient,RC2)为0.9683,验证集均方根误差(root mean square error of prediction set,RMSEP)为0.430,验证集相关系数(prediction set coefficient of determination,RP2)为0.9440,主成分数为8。结论 通过近红外光谱技术结合偏最小二乘法建立甘薯多糖模型可作为甘薯多糖快速测定的可行性方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号