首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasma-activated liquids (PALs) are emerging and promising alternatives to traditional decontamination technologies and have evolved as a new technology for applications in food, agriculture, and medicine. Contamination caused by foodborne pathogens and their biofilms has posed challenges and concerns to the food industry in terms of safety and quality. The nature of the food and the food processing environment are major factors that contribute to the growth of various microorganisms, followed by the biofilm characteristics that ensure their survival in severe environmental conditions and against traditional chemical disinfectants. PALs show an efficient impact against microorganisms and their biofilms, with various reactive species (short- and long-lived ones), physiochemical properties, and plasma processing factors playing a crucial role in mitigating biofilms. Moreover, there is potential to improve and optimize disinfection strategies using a combination of PALs with other technologies for the inactivation of biofilms. The overarching aim of this study is to build a better understanding of the parameters that govern the liquid chemistry generated in a liquid exposed to plasma and how these translate into biological effects on biofilms. This review provides a current understanding of PALs-mediated mechanisms of action on biofilms; however, the precise inactivation mechanism is still not clear and is an important part of the research. Implementation of PALs in the food industry could help overcome the disinfection hurdles and can enhance biofilm inactivation efficacy. Future perspectives in this field to expand existing state of the art to seek breakthroughs for scale-up and implementation of PALs technology in the food industry are also discussed.  相似文献   

2.
Food powders are ubiquitous in people's daily life and food industry production with numerous advantages. With the increasing use of food powder in the world, it is increasingly important to understand the processing methods of food powder and the changes in physicochemical properties after processing in order to control the processing conditions and the quality of final products. Among the many processing methods for food powders, superfine grinding technique is an emerging and useful tool for superfine powder manufacturing with some unique and promising properties, which has made the technique successfully applied in food processing over the recent decades. This review highlights the information of the main superfine grinding methods in the field of food processing and the changes in performance after superfine grinding treatment. Also, potential challenges, promising opportunities, and perspectives of this technology are covered in the review. This review will provide theoretical foundation and guideline for superfine food powder processing, which can provide new approaches and ideas for the high‐value utilization of food raw materials as well as the food design.  相似文献   

3.
The industrial processing water of fruit and vegetables has raised serious environmental concerns due to the presence of many important bioactive compounds being disposed in the wastewater. Bioactive compounds have great potential for the food industry to optimize their process and to recover these compounds in order to develop value‐added products and to reduce environmental impacts. However, to achieve this goal, some challenges need to be addressed such as safety assurance, technology request, product regulations, cost effectiveness, and customer factors. Therefore, this review aims to summarize the recent advances of bioactive compounds recovery and the current challenges in wastewater from fruit and vegetable processing industry, including fruit and beverage, soybean by‐products, starch and edible oil industry. Moreover, future direction for novel and green technology of bioactive compounds recovery are discussed, and a prospect of bioactive compounds reuse and sustainable development is proposed.  相似文献   

4.
Cross‐contamination of foods with pathogenic microorganisms such as bacteria, viruses, and parasites may occur at any point in the farm to fork continuum. Food contact and nonfood contact surfaces are the most frequent source of microbial cross‐contamination. In the wake of new and emerging food safety challenges, including antibiotic‐resistant human pathogens, conventional sanitation and disinfection practices may not be sufficient to ensure safe food processing, proper preparation, and also not be environmentally friendly. Nanotechnology‐enabled novel food safety interventions have a great potential to mitigate the risk of microbial cross‐contamination in the food chain. Especially engineered nanoparticles (ENPs) are increasingly finding novel applications as antimicrobial agents. Among various ENPs, photocatalyst metal oxides have shown great promise as effective nontargeted disinfectants over a wide range of microorganisms. The present review provides an overview of antimicrobial properties of various photocatalyst metal oxides and their potential applications as surface coatings. Further, this review discusses the most common approaches to developing antimicrobial coatings, methods to characterize, test, and evaluate antimicrobial efficacy as well as the physical stability of the coatings. Finally, regulations and challenges concerning the use of these novel photocatalytic antimicrobial coatings are also discussed.  相似文献   

5.
食品及其加工设备和环境中的腐败菌和致病菌污染是影响食品质量安全的重要因素, 高效防控这些有害微生物在食品工业中具有重大需求。植物精油不仅具有快速杀菌的作用, 而且不易引发有害微生物对食品加工理化因子产生抗性。然而, 植物精油具有亲脂性和易挥发性等缺点, 限制了其在食品消毒领域的应用。纳米乳液技术可以将植物精油包埋在食品级表面活性剂中, 形成稳定性良好的分散体系, 从而较好地克服植物精油在食品工业中应用的瓶颈问题。因此, 本文综述了植物精油纳米乳液的制备方法、纳米乳液提升植物精油体外和体内抗菌活性的效果、纳米乳液在食品表面的抗菌膜作用, 以期为植物精油纳米乳液用于促进食品质量安全提供不可或缺的依据。  相似文献   

6.
Tree nuts are important economic crops and are consumed as healthy snacks worldwide. In recent years, the increasing needs for more efficient and effective postharvest processing technologies have been driven by the growing production, higher quality standards, stricter food safety requirements, development of new harvesting methods, and demand to achieve energy saving and carbon neutralization. Among all, the technologies related to drying, disinfection, and disinfestation and downstream processes, such as blanching, kernel peeling, and roasting, are the most important processes influencing the quality and safety of the products. These processes make up the largest contribution to the energy consumptions and environmental impacts stemming from tree nut production. Although many studies have been conducted to improve the processing efficiency and sustainability, and preserve the product quality and safety, information from these studies is fragmented and a centralized review highlighting the important technology advancements of postharvest processing of tree nuts would benefit the industry. In this comprehensive review, almonds, walnuts, and pistachios are selected as the representative crops of tree nuts. Current statuses, recent advances, and ongoing challenges in the scientific research as well as in the industrial processing practices of these tree nuts are summarized. Some new perspectives and applications of tree nut processing waste and by-products (such as the hulls and shells) are also discussed. In addition, future trends and research needs are highlighted. The material presented here will help both stakeholders and scientists to better understand postharvest tree nut processing and provide technological recommendations to improve the efficiency and sustainability, product quality and safety, and competitiveness of the industry.  相似文献   

7.
The need for enhancing microbial food safety and quality, without compromising the nutritional, functional, and sensory characteristics of foods, has created an increasing interest in innovative technologies in food industry. Plasma is an emerging, green processing technology offering many potential applications and fulfills the need of the industry. The present review presents the latest developments and applications of plasma technology in food industry. Recent research investigations showed that plasma processing have caught the interest of various areas of industry including cereal, meat, poultry, dairy, fruits, vegetables, packaging, etc. Plasma processing helps to modify the food material for the desirable trait, and maintains the nutritional and textural properties in addition to microbial decontamination.  相似文献   

8.
Molecular dynamics (MD) simulation is a useful technique to study the interaction between molecules and how they are affected by various processes and processing conditions. This review summarizes the application of MD simulations in food processing and safety, with an emphasis on the effects that emerging nonthermal technologies (for example, high hydrostatic pressure, pulsed electric field) have on the molecular and structural characteristics of foods and biomaterials. The advances and potential projection of MD simulations in the science and engineering aspects of food materials are discussed and focused on research work conducted to study the effects of emerging technologies on food components. It is expected by showing key case studies that it will stir novel developments as a valuable tool to study the effects of emerging food technologies on biomaterials. This review is useful to food researchers and the food industry, as well as researchers and practitioners working on flavor and nutraceutical encapsulations, dietary carbohydrate product developments, modified starches, protein engineering, and other novel food applications.  相似文献   

9.
Abstract

Innovative food processing technologies have been widely investigated in food processing research in recent years. These technologies offer key advantages for advancing the preservation and quality of conventional foods, for combatting the growing challenges posed by globalization, increased competitive pressures and diverse consumer demands. However, there is a need to increase the level of adoption of novel technologies to ensure the potential benefits of these technologies are exploited more by the food industry. This review outlines emerging thermal and non-thermal food processing technologies with regard to their mechanisms, applications and commercial aspects. The level of adoption of novel food processing technologies by the food industry is outlined and the factors that impact their industrial adoption are discussed. At an industry level, the technological capabilities of individual companies, their size, market share as well as their absorptive capacity impact adoption of a novel technology. Characteristics of the technology itself such as costs involved in its development and commercialization, associated risks and relative advantage, and level of complexity and compatibility influence the technology's adoption. The review concludes that a deep understanding of the development and application of a technology along with the factors influencing its acceptance are critical to ensure its commercial adoption.  相似文献   

10.
当前食品工业加工方法主要依赖于传统的热处理与化学方法,这些方法往往会对食品质量和安全性产生负面影响,且存在高成本、环境不友好等弊端,开发高效、绿色的食品加工方法已成为食品业界亟待解决的难题。脉冲电场(Pulsed Electric Field,PEF)技术是一种利用高电压振幅的电磁脉冲对物料进行处理的物理方法,作为一种新兴的非热加工技术,PEF技术因其独特的优势吸引了广大学者对其进行广泛而深刻的讨论,以期将其应用于食品工业。该研究综述了脉冲电场技术的原理、应用机制,包括电穿孔理论、电流体、等离子体以及电化学反应与自由基激活假说,并对其在食品工业上的应用进行总结与归纳,为食品加工领域提供了有效的解决方法,有利于推动脉冲电场技术在食品加工领域的发展与应用。  相似文献   

11.
Three-dimensional (3D) printing, one of the forms of additive manufacturing, has become a popular trend worldwide with a wide range of applications including food. The technology is adaptable and meets foods nutritional and sensory needs allowing meat processing to reach a sustainable level, technology addressing the food requirement of the ever-increasing population and the fast-paced lifestyle by reducing food preparation time. By minimizing food waste and the strain on animal resources, technology can help to create a more sustainable economy and environment. This review article discusses the 3D printing process and various 3D printing techniques used for food printing, such as laser powder bed fusion, inkjet food printing, and binder jetting, a suitable 3D technique used for meat printing, such as extrusion-based bioprinting. Moreover, we discuss properties that affect the printability of meat and its products with their applications in the meat industry, 3D printing market potential challenges, and future trends.  相似文献   

12.
Food product safety is a public health concern. Most of the food safety analytical and detection methods are expensive, labor intensive, and time consuming. A safe, rapid, reliable, and nondestructive detection method is needed to assure consumers that food products are safe to consume. Terahertz (THz) radiation, which has properties of both microwave and infrared, can penetrate and interact with many commonly used materials. Owing to the technological developments in sources and detectors, THz spectroscopic imaging has transitioned from a laboratory‐scale technique into a versatile imaging tool with many practical applications. In recent years, THz imaging has been shown to have great potential as an emerging nondestructive tool for food inspection. THz spectroscopy provides qualitative and quantitative information about food samples. The main applications of THz in food industries include detection of moisture, foreign bodies, inspection, and quality control. Other applications of THz technology in the food industry include detection of harmful compounds, antibiotics, and microorganisms. THz spectroscopy is a great tool for characterization of carbohydrates, amino acids, fatty acids, and vitamins. Despite its potential applications, THz technology has some limitations, such as limited penetration, scattering effect, limited sensitivity, and low limit of detection. THz technology is still expensive, and there is no available THz database library for food compounds. The scanning speed needs to be improved in the future generations of THz systems. Although many technological aspects need to be improved, THz technology has already been established in the food industry as a powerful tool with great detection and quantification ability. This paper reviews various applications of THz spectroscopy and imaging in the food industry.  相似文献   

13.
High hydrostatic pressure (HHP), used alone or with other processes, is an emerging technology increasingly used in the food industry to improve microbial safety, and the functionality and bioactive properties of food products. HHP provides a way to reduce energy requirements for food processing and may contribute to improved energy efficiency in the food industry. Hen egg is used by the food industry to formulate many food products. To improve the microbiological safety of egg and egg‐derived products, HHP processing is an attractive alternative to heat‐ pasteurization and a potential technology. However, HHP treatment induces structural modifications of egg components (such as proteins) which could positively or negatively affect the physicochemical and functional properties of egg‐derived products. Improving our knowledge regarding the potential of HHP in the egg industry will add value to the final food products and increase profitability for egg producers and the food industry.  相似文献   

14.
Electrolyzed water (EW) has gained immense popularity over the last few decades as a novel broad‐spectrum sanitizer. EW can be produced using tap water with table salt as the singular chemical additive. The application of EW is a sustainable and green concept and has several advantages over traditional cleaning systems including cost effectiveness, ease of application, effective disinfection, on‐the‐spot production, and safety for human beings and the environment. These features make it an appropriate sanitizing and cleaning system for use in high‐risk settings such as in hospitals and other healthcare facilities as well as in food processing environments. EW also has the potential for use in educational building, offices, and entertainment venues. However, there have been a number of issues related to the use of EW in various sectors including limited knowledge on the sanitizing mechanism. AEW, in particular, has shown limited efficacy on utensils, food products, and surfaces owing to various factors, the most important of which include the type of surface, presence of organic matter, and type of tape water used. The present review article highlights recent developments and offers new perspectives related to the use of EW in various areas, with particular focus on the food industry.  相似文献   

15.
酶技术在食品加工中应用研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
酶技术是一种绿色安全高效的生物技术,对食品工业的技术革新和水平提高具有重要的作用。食品加工过程涉及许多复杂的理化变化,受热时营养素、颜色、质构、风味等方面容易受到破坏,这就为酶技术的应用提供了必要。目前,酶技术已经广泛应用于乳制品工业、肉制品工业、焙烤工业、饮料和果汁工业、淀粉和糖工业、油脂工业及安全检测等食品领域。本文主要从改善食品加工工艺、提高食品品质、提高食品安全性、增强食品质量控制等方面介绍了酶技术在食品加工中的应用进展,并对酶技术在食品行业中的发展作了展望。  相似文献   

16.
Biofilm is an advanced form of protection that allows bacterial cells to withstand adverse environmental conditions. The complex structure of biofilm results from genetic-related mechanisms besides other factors such as bacterial morphology or substratum properties. Inhibition of biofilm formation of harmful bacteria (spoilage and pathogenic bacteria) is a critical task in the food industry because of the enhanced resistance of biofilm bacteria to stress, such as cleaning and disinfection methods traditionally used in food processing plants, and the increased food safety risks threatening consumer health caused by recurrent contamination and rapid deterioration of food by biofilm cells. Therefore, it is urgent to find methods and strategies for effectively combating bacterial biofilm formation and eradicating mature biofilms. Innovative and promising approaches to control bacteria and their biofilms are emerging. These new approaches range from methods based on natural ingredients to the use of nanoparticles. This literature review aims to describe the efficacy of these strategies and provide an overview of recent promising biofilm control technologies in the food processing sector.  相似文献   

17.
This study assessed a continuous in-line decontamination system for food contact surfaces and processing equipment that utilized cold atmospheric pressure plasma (CAP) generated from ambient air. The plasma system was evaluated against two common foodborne pathogens (Salmonella Typhimurium, Listeria monocytogenes) on stainless steel surfaces and against S Typhimurium on commercial poly[ether]-thermoplastic poly[urethane] (PE-TPU) conveyor belts, under simulated conditions of a food-processing facility. A significant level of microbial inactivation was achieved, up to 3.03 ± 0.18 and 2.77 ± 0.71 logCFU/mL reductions of L. monocytogenes and S. Typhimurium respectively within 10 s total treatment on stainless steel surfaces, and a 2.56 ± 0.37 logCFU/mL reduction of S. Typhimurium within 4 s total treatment on the PE-TPU material, according to a procedure based on the well-established EN 13697:2015 industrial protocol. CAP exposure was shown to have a minor impact on the morphology and composition of the treated surfaces. The results indicated that CAP can be applied for effective and continuous disinfection against common foodborne pathogens in food-processing facilities.Industrial relevanceLow temperature plasmas have shown great promise for microbial decontamination, yet industrial uptake of the technology has been limited due to scaling limitations. In this study, a prototype conveyor-based CAP decontamination system was developed and tested under realistic conditions expected within a food-processing facility. The results showed a high level of antimicrobial action against two common foodborne pathogens within a few seconds of CAP exposure, a timescale in line with industrial line processing speeds. Our findings demonstrated that CAP shows great promise for the continuous in-situ decontamination of food contact surfaces, with the potential to mitigate against the costly downtimes incurred in current production line practices implementing chemical disinfectants.  相似文献   

18.
The demand for raw and fresh dairy products with the desired organoleptic characteristics and health benefits led to research in non-thermal processing technologies aiming to retain all the product qualities and nutrients. Irradiation is an emerging non-thermal technology used in destroying micro- and macroorganisms that might exist in food by exposure to either gamma (γ) rays from radioactive isotopes (cobalt60 or caesium137) or an electron accelerator (electron beam or X-radiation) under a controlled environment. With the endorsement of many international food and health organisations such as the Food and Agriculture Organization (FAO) and World Health Organization (WHO), irradiation is becoming more widely researched as a process to maintain quality, improve safety and reduce quarantine and post-harvest loss. Irradiation has the potential for allergenicity reduction and the provision of a sterile diet for immunocompromised patients. Unlike other food categories, the use of irradiation as a preservative technique on dairy products has received little attention due to the complexity of the product varieties. Whilst being accepted in some countries, the adoption of irradiation as an alternative measure of treating and preventing potential problems in the food chain faces strict opposition in many countries. In this review, the focus is on the radiation processing as an emerging technology and its specific application on dairy products.  相似文献   

19.
Food supply chain is a rapidly growing integrated sector and covers all the aspects from farm to fork, including manufacturing, packaging, distribution, storing, as well as further processing or cooking for consumption. Along this chain, smart packaging could impact the quality, safety, and sustainability of food. Packaging systems have evolved to be smarter with integration of emerging electronics and wireless communication and cloud data solutions. Although there are many factors causing the loss and waste issues for foods throughout the whole supply chain of food and there have been several articles showing the recent advances and breakthroughs in developing smart packaging systems, this review integrates these conceptual frameworks and technological applications and focuses on how innovative smart packaging solutions are beneficial to the overall quality and safety of food supply by enhancing product traceability and reducing the amount of food loss and waste. We start by introducing the concept of the management for the integrated food supply chain, which is critical in tactical and operational components that can enhance product traceability within the entire chain. Then we highlight the impact of smart packaging in reducing food loss and waste. We summarize the basic information of the common printing techniques for smart packaging system (sensor and indicator). Then, we discuss the potential challenges in the manufacturing and deployment of smart packaging systems, as well as their cost-related drawbacks and further steps in food supply chain.  相似文献   

20.
High pressure processing is a food processing method which has shown great potential in the food industry. Similar to heat treatment, high pressure processing inactivates microorganisms, denatures proteins and extends the shelf life of food products. But in the meantime, unlike heat treatments, high pressure treatment can also maintain the quality of fresh foods, with little effects on flavour and nutritional value. Furthermore, the technique is independent of the size, shape or composition of products. In this paper, many aspects associated with applying high pressure as a processing method in the food industry are reviewed, including operating principles, effects on food quality and safety and most recent commercial and research applications. It is hoped that this review will promote more widespread applications of the technology to the food industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号