首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
纤维素酶在木质纤维素底物上的吸附是一个复杂的物理化学过程,与纤维素酶和木质纤维素底物本身的性质密切相关,而且还受水解体系的各种参数,如缓冲溶液的浓度、pH、离子强度、温度、是否添加表面活性剂等影响。酶解结束时,大量的纤维素酶吸附在残余底物上。回收吸附在残余底物上的纤维素酶,是降低生物乙醇生产中纤维素酶成本的重要策略。缓冲溶液的pH、温度、是否添加表面活性剂等也对纤维素酶的脱附有着重要的影响。本文综述了影响纤维素酶吸附、脱附的各种参数;总结了纤维素酶脱附领域的研究进展以及纤维素酶循环利用的基本流程。  相似文献   

2.
表面活性剂对纤维素酶水解过程的影响   总被引:6,自引:3,他引:3  
分别以湿氧化、稀酸常压水解和蒸汽爆破预处理麦草为底物,考察了不同表面活性剂及用量对纤维素酶解过程的影响.实验表明,添加表面活性剂对纤维素酶水解过程有明显影响;添加非离子型表面活性剂(PEG6000、吐温80)可以提高纤维素的可溶性、可发酵糖的转化水平,其中向湿氧化处理的麦草中加入PEG6000后转化水平提高得最大;而添加离子型表面活性剂对酶解起抑制作用.非离子型表面活性刑和纤维素水解底物的最佳比例大约是0.05 g/g DM.  相似文献   

3.
为了解决酸性纤维素酶水洗整理中的靛蓝返沾现象,本文详细研究了阴离子(SDS)、两性离子(PC)和非离子表面活性剂(T60和AEO-9)对纤维素酶吸附和水解性能的影响。在此基础上,测试了表面活性剂复配对牛仔织物水洗性能的影响。结果显示,在靛蓝对纤维素酶的吸附性能上,三种表面活性剂影响程度较弱;在微晶纤维素对酶的吸附上,阴离子和非离子表面活性剂有较好的抑制作用;但是在水解性能上,阴离子表面活性剂容易造成酶失活,而非离子表面活性剂以及两性离子影响较小,甚至还有一定激活作用;最终,CIE L和CIE |b|值测试表明,阴离子与非离子表面活性剂复配对纤维素酶水洗性能的提升较差,而非离子与非离子表面活性剂复配后则可以达到较好的水洗效果。  相似文献   

4.
分析了酸性纤维素酶SHL对纤维素纤维水解能力的各种影响因素,如温度、pH值、织物结构、表面活性剂、染料等。实验结果表明,该酶的最佳处理温度40℃,pH值为5.0。该纤维素酶对纯棉针织物的水解能力远大于对机织物的水解能力:在处理过程中适当提高机械作用力,增加水的硬度以及添加非离子表面活性剂,都能促进酶的水解,而离子型表面活性剂抑制纤维素酶的水解;直接、活性、靛蓝和偶氯染料都抑制纤维素酶的水解.但靛蓝和偶氮染料对纤维素酶的抑制作用较小。  相似文献   

5.
木质纤维素原料作为新一代生物乙醇发酵的原料备受关注,但在实际生产制备过程中木质纤维素中木质素的存在对纤维素酶水解纤维素这一过程产生了抑制作用,限制了木质纤维素资源在生物乙醇发酵方面工业化规模的推广与应用。本文通过归纳近年来有关减少木质素对纤维素酶水解的抑制、提高酶水解效率的研究进展,明确提出了推动木质纤维生物质炼制实现工业化所需深入探索的策略和方向。  相似文献   

6.
将纤维素原料降解为可发酵糖是木质纤维素生物质生物转化乙醇过程中的重要环节,通过对原料的预处理可以提高纤维素酶的催化效率.本文通过改变甘蔗渣纤维的尺寸、添加多聚磷酸盐等方法,发现均能改变蔗渣纤维的表面Zeta电位.初步研究了其Zeta电位变化规律及Zeta电位的变化对纤维素酶水解效果的影响,并对Zeta电位的变化影响纤维...  相似文献   

7.
作为木质纤维素生物乙醇制备过程中必不可少的步骤,酶水解可对木质纤维素进行高效且经济的转化,也是实现工业化生产木质纤维素生物乙醇的关键步骤。木质素作为木质纤维素主要组分之一,其对酶促反应的作用,在影响木质纤维素酶水解转化的因素中极其重要。目前,木质素对木质纤维素的酶水解主要表现为抑制,体现在空间位阻、非生产性吸附(包括疏水作用、静电作用、氢键作用)以及生成的可溶性酚类化合物的影响3个方面。本文综述了近年来木质素在木质纤维素酶水解转化作用的研究,并对木质纤维素生物乙醇的发展和工业化生产前景做出了展望。  相似文献   

8.
表面活性剂、染料对纤维素酶活性的影响   总被引:2,自引:0,他引:2  
测定了非离子、阴离子、阳离子表面活性剂、染料与酶共存体系中的纯绵织物的减量率,比较了共存体系中的酶的相对活性。同时测定色织物的分光反射率曲线,得到光的最大吸收波长。由实验得知:①非离子、阴离子表面活性剂是纤维素酶的激活剂,阳离子表面活性剂是纤维素酶的抑制剂;②直接染料、活性染料是纤维素酶的抑制剂,可能与形成不活泼的染料—纤维素酶复合物有关;③还原染料对纤维素酶无显著的抑制作用  相似文献   

9.
木质纤维原料酶水解是利用木质纤维原料生产燃料酒精的关键步骤之一。对纤维素酶及其水解木质纤维原料作用机制、纤维素酶的生产、木质纤维原料酶水解的影响因素和木质纤维原料酶水解动力学作了全面综述.并对提高木质纤维原料酶水解效率和降低水解成本的途径进行了讨论。  相似文献   

10.
耿曙光 《中国酿造》2012,31(6):160-161
乙醇是以木质纤维素为原料,通过蒸气预处理、纤维素酶的牛产、酶水解、酒精发酵等工艺而制成的.该文主要阐述用木质纤维素生产乙醇的方法和工艺流程.  相似文献   

11.
12.
曲虫治理效果分析   总被引:1,自引:0,他引:1  
王慎安 《酿酒》2004,31(3):13-14
通过对曲虫治理应用研究效果的分析 ,结果表明 :质量效果提高 7% ,糖化力效果提高 80 % ,综合效果提高 92 7%。  相似文献   

13.
The article gives a brief account of the main streamlines and scope of scientific activities of Department of Preventive Medicine of RAMS for the recent 10 years.  相似文献   

14.
目的 分析食用油中酸价测定的不确定度来源并建立不确定度评定方法, 为检验数据的可靠性和准确性提供参考。方法 依据GB 5009.229-2016《食品安全国家标准 食品中酸价的测定》和JJF 1059.1-2012《测量不确定度评定与表示》建立数学模型, 计算各变量的不确定度, 最终计算扩展不确定度。结果 结果显示, 样品中酸价的扩展不确定度为U=1.764×10?3 mg/g, 样品中酸价含量为(0.16±0.002) mg/g(置信水平95%, 包含因子k=2)。结论 在测定过程中, 测量重复性对总的不确定度影响最大, 其次是滴定管的体积。  相似文献   

15.
脂肪酸聚甘油酯(Polyglycerol esters of fatty acids,简写为PGE)在常温下有半固态和固态两种存在状态,本文通过对分别添加这两种PGE的软冰淇淋基料进行粘度、pH、粒径分析和垂直扫描分散稳定性分析(Turbiscan),发现半固态PGE的添加量为0.2%时,乳状液的粘度最低,粒径最小,稳定性最好;固态PGE的添加量为0.4%时.乳状液的粘度最低,粒径最小.通过比较发现,两种PGE对基料的影响有很大差别:半固态PGE能使乳状液的粒子更小,并能有效延长乳状液的稳定性;而固态PGE由于其熔点较高,可以促进脂肪结晶.  相似文献   

16.
有梭织机稀密路织疵成因分析   总被引:4,自引:1,他引:3  
从有梭织机打纬过程中织机构件的位置和状况对纬纱之间距离的影响出发,推导出纬向密度计算公式,直观分析了影响纬向密度的各种因素,提出了为减少稀密路织疵在国产老织机上采取的几项改进措施:采用弹簧回综、机外送经、电子驱动、导布辊加压等装置。  相似文献   

17.
通过DNS法测定小麦木聚糖酶酶促反应的最适条件。结果表明:小麦木聚糖酶酶促反应的最适温度是50℃,最适pH是5.5~6.0,最适底物浓度是1.0000%,最适底物与酶液用量比例为9/1,最适反应时间为5-9min。  相似文献   

18.
酶水解猪皮胶原的色谱分离研究   总被引:3,自引:0,他引:3  
戴红  张新申  蒋小萍 《中国皮革》2001,30(21):10-12
比较详细地描述了用现代色谱分离的试验方法.用本实验室自制的弱阳离子交换树脂将猪皮胶原的酶水解产物成功地分离为5个组分,并详细讨论了影响分离效果的各种因素,确定了最佳分离条件.  相似文献   

19.
文章利用不同温度下Na ,K ∥Cl-,SO2 -4 —H2 O四元体系相图 ,对通过物理方法分离高温盐中一水硫酸镁和氯化钠的工艺条件进行了分析。得出当循环母液和高温盐配成的浆料温度超过 5 5℃ ,浆料液体中氯化镁达到一定浓度时 ,才能分离出纯净的一水硫酸镁和氯化钠。  相似文献   

20.
就皮化材料与清洁化制革的关系、目前传统制革工艺中存在的严重污染问题及针对这些问题近年来采取的新的方法进行了探讨,指出清洁化是我国制革行业的必由之路,清洁化制革工艺与皮化材料的关系非常密切,只有研发出相应新型的、高吸收的、功能型的、易降解型的各类化工材料,才合乎清洁化生产的要求。在制革工艺中采用生物酶制剂辅助浸水脱脂、无硫脱毛与无灰浸碱工艺、无铵脱灰/碱等改造传统工艺,减少污染;采取高吸收铬鞣、无铬或少铬鞣制,提高铬的吸收率或克服铬鞣的弊端;在染整中,合成并采用助剂辅助染料、复鞣剂和加脂剂等的吸收与结合。这几方面通过集成应用,方可减轻制革的污染,实现清洁化生产。同时,就皮革固废物的利用及水的循环使用问题提出些看法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号