首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 265 毫秒
1.
生物技术在食品安全检测中的最新应用   总被引:1,自引:0,他引:1  
食品安全事故的频繁发生,使得检测技术成为食品科学研究的热点。基于生物技术的快速检测方法正越来越广泛的应用于食品安全检测,同时,由生物、化学、物理等学科交叉衍生而来的新技术,也已逐步应用于食品安全检测领域。该文介绍了FTA-PCR、环介导等温扩增、核酸探针、基质分子印迹、生物芯片、免疫层析、生物传感器等新技术,并对这些新技术的优缺点及运用前景,予以系统的分析和介绍。  相似文献   

2.
该文构建一种基于靶标诱导滚环扩增(rolling circle amplification,RCA)的无标记适配体快速检测赭曲霉毒素A(ochratoxin A,OTA)生物传感器。该生物传感器探针由RCA 引物与OTA 适配体两部分组成,在OTA 存在的环境中,OTA 适配体特异性识别靶标,探针结构被打开,RCA 引物与环状DNA 模板(circular DNA template,CT)结合开启RCA 反应,加入核酸染料SYBR Gold 产生荧光信号。此生物传感器具有较高的特异性,检测限为6.6×10-2 nmol/L,线性检测范围为6.6×10-2~660 nmol/L,可用于具体的分析检测。此生物传感器无需复杂化学修饰且操作简单,在食品安全检测中具有良好的应用前景。  相似文献   

3.
酶基生物传感器是一种以酶作为生物识别元件的生物传感器, 具有灵敏度高、专一性强、检测限低、选择性好、操作简单、便于携带和可室外在线连续监测等优点, 是最早实现商品化的一类生物传感器。目前, 酶基生物传感器研究广泛并已成功应用于各个领域, 包括环境监测、食品安全检验、生物医学检验等领域。随着环境污染、食品安全等问题的加剧, 现场快速检测技术的需求不断增大。因此, 研究酶基生物传感器具有重要的意义。本文介绍了酶基生物传感器, 阐述了酶基生物传感器的相关概念和原理, 总结了电化学酶基生物传感器、光学酶基生物传感器和其他酶基生物传感器在快速检测中的研究现状, 并展望了酶基生物传感器未来的研究方向。  相似文献   

4.
近年来,快速检测技术成为食品安全领域的一个重要研究方向。成簇规律间隔短回文序列(CRISPR)及CRISPR相关蛋白(Cas)组成的CRISPR/Cas系统因优越的靶向性而被广泛应用于核酸检测中。基于CRISPR/Cas系统的核酸传感器具有灵敏度高、特异性强、时效性快等优势,成为快检领域的研究热点,也推动了食品安全快速检测技术的发展。本文基于CRISPR/Cas系统进行综述,分析不同的CRISPR/Cas系统结合核酸技术在靶标检测中的应用情况,展望CRISPR/Cas核酸传感器在食品安全快速检测领域的未来研究方向,为研发基于此核酸传感器的新型检测方法提供参考。  相似文献   

5.
核酸扩增技术是一种在体外快速扩增特定DNA片段的分子生物学技术,目前已广泛应用于传染病检测、生物勘测、食品安全检测、临床诊断和公共卫生监测等研究领域。其中,食品安全领域的问题日渐成为人们关注的焦点,尤其是动物源性食品掺假的现象屡禁不止。在过去的科学研究中,动物源性食品掺假的核酸扩增技术发展迅速,取得了很大进展。该文就核酸扩增技术中的凝胶电泳PCR、实时荧光定量PCR、数字液滴PCR、环介导等温扩增、交叉引物扩增、滚环扩增、重组酶聚合酶扩增等技术的原理及在动物源性食品掺假检测中的应用进行综述。讨论了各类核酸扩增技术的关键优势和局限性,简要介绍了现有的挑战和进一步的研究进展,旨在为动物源性食品掺假核酸扩增技术的发展指明方向。  相似文献   

6.
近年来食品安全问题频发, 国家和相关食品行业对食品安全问题变得越来越重视。为保证食品安全, 行之有效的检测方法必不可少。环介导等温扩增技术(loop-mediated isothermal amplification, LAMP)是一种基因扩增技术, 自2000年发明以来广泛应用于医学、动物科学、食品学等领域, 现已成为食品检测技术中生物技术的重要组成部分, 由于其高灵敏度、高特异性、成本低、操作简单等优势而备受各国专家学者的青睐。本文对近年来LAMP检测技术在食品安全检测中的研究进展加以综述, 同时探讨LAMP技术在食品检测领域的研究现状以及未来的研究趋势, 为LAMP技术的发展方向提供参考。  相似文献   

7.
表面等离子体共振(SPR)生物传感技术是一种具有良好发展前景的新兴生物化学检测技术,具有灵敏度高、快速、无需标记等优点,广泛应用于材料化学、医药检测、环境监测和食品安全等领域。文章对SPR生物传感器进行了简要介绍,并着重对其在有毒有害残留检测中的应用进行了分析,最后对SPR生物传感技术在消费品检测领域的研究前景进行了展望。由于SPR技术检测过程方便快捷、灵敏度高,且只要更换不同的修饰特异性匹配芯片,一台仪器便可实现无机和有机类危害因子的筛查检测,因此SPR技术在消费品检测中有很好的发展前景。  相似文献   

8.
表面等离子体共振(surface plasmon resonance,SPR)传感器是利用物理光学现象实现对待测物进行快速检测的一种超灵敏检测仪器。近年来因其无需标记、灵敏度高、检测速度快、试剂用量少和可实时监测等优点在食品安全检测领域得到了广泛的关注。本文主要介绍SPR传感器的原理及其在食品安全检测中的研究现状,重点展示了SPR生物传感器近年来在食品安全检测方面的应用,主要包括在农兽药残留、致病菌、重金属以及生物毒素等方面的应用现状,阐述了SPR传感器在食品安全检测领域的优势及发展趋势。  相似文献   

9.
随着经济社会的发展和人们生活水平的提高,由镰刀菌毒素污染导致的食品安全问题受到广泛关注。检测技术作为食品安全的技术保障,越来越受到人们的重视。 鉴于镰刀菌毒素危害性大且广泛存在,镰刀菌毒素分析和控制对于人及动物安全尤为重要。近年来,快速、高效的镰刀菌毒素检测方法已成为国内外学者研究的热点,其中荧光适体传感器检测技术快速发展,已在食品安全检测领域发挥着越来越重要的作用。本文着重介绍了荧光适体传感器在镰刀菌毒素检测中的应用进展,包括其基本特征、原理及其应用。最后,对荧光适体传感器应用于食品中镰刀菌毒素检测现阶段亟待解决的问题进行了梳理和展望。本文可为荧光适体传感器的研究和相关新技术的开发提供参考。  相似文献   

10.
快速筛选技术是指包括样品制备在内,能够在较短时间内出具检测结果的行为,也称之为快速检测技术。随着我国食品安全问题广受关注,快速筛选技术便成为研究的重点。快速检测目前主要应用于食品中农、兽药残留,微生物致病菌,营养成分,不明污染物等针对食品安全的现场快速检测及常规检测。本文介绍了分子光谱法、免疫分析方法、酶抑制法和生物传感器等几种快速筛选技术的研究进展以及在食品安全检测等领域的应用。随着快速筛选技术的不断发展使得快速检测方法及其相关仪器产品种类越来越多且原理复杂,快速检测方法的质量控制和方法验证显得尤为重要。本文重点阐述了快速筛选技术与方法的评价验证,其主要技术参数包括:敏感度、阴性和阳性界限值的准确性、选择性和特异性、检出限、定量限、重复性和再现性等,并对其发展前景进行了展望。  相似文献   

11.
食源性致病菌是影响人类食品安全的重要因素.人类食源性致病菌致病率的逐年上升,引起世界广泛关注.滚环等温扩增(rolling circle amplification,RCA)技术因具有高特异性、高灵敏度、稳定、操作简单等优点,在食源性致病菌检测中具有广泛的应用前景.近年来以滚环等温扩增技术为基础,针对食源性致病菌的检测...  相似文献   

12.
微生物传感器是以活体微生物细胞为感应元件, 感应需要测定的靶标物质浓度并按照一定规律转换为可识别信号的检测装置。早期的微生物传感器以微生物测定和微生物电极的形式出现, 近年来随着分子生物学和合成生物学技术的进步, 基因工程类微生物传感器迅速发展, 并且由于其成本低、使用便捷、功能扩展性强等优势, 使其在食品安全领域具有良好的应用潜力。本文介绍了微生物传感器的发展历程和基本原理, 总结了微生物传感器在食品安全检测、食品品质分析、食品安全毒性评估、食品污染脱毒等方面的最新研究成果, 分析了微生物传感器发展趋势和当前的技术瓶颈。本综述可为食品安全快速检测技术研究和应用人员提供信息和技术参考, 推动微生物传感器领域的进一步发展。  相似文献   

13.
肉及肉制品是人类重要的食物来源, 为人体提供必要的营养素。但是以经济为目的的肉制品掺假, 是食品安全中屡禁不止的全球性问题。快速、准确、有效的检测技术是有效监督肉类掺假的关键。本文综述了核酸检测技术中热循环扩增技术(如普通PCR、实时PCR、多重PCR)和等温扩增技术[如环介导等温扩增(loop-mediated isothermal amplification, LAMP)技术、重组酶聚合酶扩增(recombinase polymerase amplification, RPA)技术、滚环扩增(rolling circle amplification, RCA)技术、交叉引物等温扩增(cross prime amplification, CPA)技术等]的原理及在肉类种源鉴别中的应用。提出梯型熔解温度等温扩增(ladder-shape melting temperature isothermal amplification, LMTIA)技术, 以期推进核酸检测技术的研究及在肉制品领域的应用。在肉类种源的检测中, 实时荧光定量PCR技术、跨越式滚环等温扩增(saltatory rolling circle amplification, SRCA)技术等均能检出0.01%的掺伪, 可用于定量检测, 表明这些核酸技术在肉类种源检测中有很好的应用前景。  相似文献   

14.
近年来食品安全事故频繁发生,食品的安全问题被广泛关注.现阶段,谷物、蔬菜、水果等农产品的种植及采摘后的加工处理过程虽均在相对安全卫生的条件下进行,但因环境污染及使用化学药品处理,处理后的食品是否依旧安全可靠存在较大的不确定性.传统食品检测技术操作复杂、专业性强、仪器设备贵且无法实现现场操作,而生物传感器操作简单、可重复...  相似文献   

15.
食品源危害因子对人类健康构成直接且严重的威胁, 开发快速、准确兼具高灵敏度的食品检测方法是解决当前食品安全挑战的有效解决方式。电化学适配体传感器的技术具有高灵敏度、高特异性和准确性等优点, 在食品质量安全检测方面具有广阔的应用前景。本文综述了近年来在食品检测领域电化学适配体传感策略的最新研究进展, 对基于适配体的新型食品危害因子电化学生物传感器的类型进行了总结归纳分类, 重点讨论了应用于食品危害因子检测的不同电化学适配体生物传感策略, 并对该技术在食品检测领域发展前景进行了展望, 以期为相关领域研究人员提供参考, 促进电化学适配体传感器在食品检测领域的进一步开发与应用。  相似文献   

16.
真菌毒素是真菌产生的有毒次生代谢物,其广泛存在于被污染的食物中,其中黄曲霉毒素已被认定为天然存在的剧毒致癌物。鉴于真菌毒素污染给人类健康与安全带来的风险与危害,发展低成本、快速、高效的检测方法以确保食品安全,具有重要的现实意义。已有大量研究者构建了基于单一量子点或其他荧光材料为荧光探针的生物传感器用于检测真菌毒素,并且从材料、检测方法和生物传感器等角度进行了详细的检测。然而,这些传感器在应用于真菌毒素检测时仍存在荧光探针易团聚、荧光性能不稳定、耐光漂白性能差等一种或多种局限,而基于核壳型量子点的新型生物传感器具有信号增敏、性能稳定、选择性好等优点,已成为构建真菌毒素检测新方法的热点研究内容。然而,目前并没有系统的去阐述核壳量子点构建的生物传感器在真菌毒素中的应用,因此,为了弥补该领域综述的空缺,本文主要从基于核壳量子点构建的免疫电化学发光传感器、适配体ECL传感器、免疫荧光传感器、适配体荧光传感器和试纸条传感器在真菌毒素中的应用进展进行阐述,本文首次系统地阐述了核壳型量子点生物传感器在粮油食品真菌毒素分析检测中的研究进展,以期为同类研究提供一定的理论依据。  相似文献   

17.
目前食物过敏在人群中的収生率呈明显上升趋势,食物过敏已成为突出的食品安全问题。食物过敏事敀最有敁的预防方式是过敏者避克食用过敏食物,因此检测不同食物中是否含有过敏原其有十分重要的意义。本文比较了食品法具委员会、澳大利亚、加拿大、中国、欧盟、日本、南非、美国对食品过敏原标识管理的情况,综述了基于蛋白水平的酶联克疫(enzyme-linked immuno sorbent assay, ELISA)法、克疫层析技术和基于核酸水平的实时荧光定量PCR技术、环介导等温扩增技术(loop-mediated isothermal amplification, LAMP)检测食物过敏原的方法,探讨了质谱法以及生物芯片、生物传感器等兵他新关检测技术在过敏原检测领域的应用,有利于加强食品质量监管的力度,确保食品安全。  相似文献   

18.
环介导等温扩增技术(Loop-mediated isothermal amplification,LAMP)是近年发展起来的一种新型核酸检测技术。其采用特异识别靶序列上6个位点的4条引物和一种具有链置换活性的DNA聚合酶,在等温条件下进行核酸扩增,与传统核酸检测技术(PCR法、实时荧光定量PCR法)相比,具有操作简单、特异性强、灵敏度高、可肉眼判读结果等优点。核酸检测是食品安全检测技术的一个重要手段,本文综述了LAMP技术在食品微生物检测、转基因成分检测、过敏原成分检测和动物源性成分检测领域的应用研究进展,探讨了LAMP技术在食品检测领域的发展前景,以期为食品快速、高通量检测技术建立提供参考。  相似文献   

19.
食品安全是世界各国关注的焦点问题。快速检测仪器以其简便、快速、高效、经济的特点,较好地满足了食品快速初筛检测的需求,在食品安全监测中发挥了重要作用。本文将快速检测仪器分为实验室、在线和现场速测三大类,通过对免疫法、酶抑制法、生物传感器、PCR技术等与快检仪器相应的快检方法与技术的阐述,综述了快速检测仪器在食品安全检测中的应用及其研究进展,展望了我国食品安全领域快速检测仪器的发展方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号