首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
杨思琪 《中国油脂》2020,45(6):18-24
分别以去皮和带皮脱脂芝麻粕为稳定剂制备了高内相乳液(HIPEs),研究了该乳液的基本性质,探讨了脱脂芝麻粕添加量、油相体积分数、体系pH以及离子浓度对HIPEs微观结构、粒径及流变性质的影响。结果表明:油相体积分数为0. 75时,去皮和带皮脱脂芝麻粕稳定HIPEs的最低添加量分别为5. 0%和3. 0%;去皮和带皮脱脂芝麻粕添加量为5. 0%时,其稳定HIPEs的最高油相体积分数分别为0. 75和0. 85;脱脂芝麻粕在中性pH以及添加适量NaCl下,制备的HIPEs更稳定。流变性质研究表明,HIPEs内部存在以弹性为主的凝胶网络结构,随着脱脂芝麻粕添加量的增大,HIPEs粒径逐渐减小且呈均匀分布,黏弹性能逐渐增大。  相似文献   

2.
本研究以天然大豆分离蛋白(SPI)为原料,探究了其稳定高内相乳液(HIPEs)的基本性质。对SPI的SDS-PAGE电泳、平均粒径,ζ电位进行表征与测定,探讨了蛋白浓度对稳定HIPEs显微结构、油滴粒径及流变性质的影响。结果表明:实验室制备SPI颗粒性质优良,为天然低变性率SPI。新鲜制备的HIPEs呈凝胶状,将其放置在室温下储藏6个月后仍保持稳定,稳定性优于牛血清白蛋白(BSA)及酪蛋白酸钠(SC)稳定的HIPEs。显微结构图表明其内部存在紧密堆积的网络结构。蛋白浓度为1.0 wt%时,SPI稳定HIPEs的最高油相体积分数为0.87。油相体积分数为0.8时,SPI稳定HIPEs的最低蛋白浓度为0.6 wt%。流变性质表明HIPEs内部存在以弹性为主的凝胶网络结构,随着蛋白浓度的增大,油滴粒径逐渐减小且呈均匀分布,粘弹性能逐渐增大。本研究对于开发新型高脂健康食品提供了新思路。  相似文献   

3.
本文以自组装小麦醇溶蛋白颗粒(GP)稳定的Pickering高内相乳液(HIPEs)为模板制备具有开孔结构的多孔材料并进行相关表征。通过反溶剂法制备GP,混合丙烯酰胺、聚乙二醇为连续相,正十二烷为分散相制备稳定Pickering HIPEs,研究不同蛋白浓度及油相体积对高内相乳液模板及多孔材料相关性质的影响。在p H 4时,GP浓度为1.5%、2.0%和2.5%及油相分数为75%、80%和85%均能以HIPEs为模板制备出稳定的亲水性多孔材料。GP浓度从1.5%增加至2.5%时,HIPEs中乳液粒径减小,材料内部结构孔壁变厚,表观密度增大,压缩模量从15.16 MPa增至18.01 MPa,2.0%GP浓度制备的多孔材料具有较好的持水能力,吸水率可达10.18 g/g;随着油相体积从75%增加至85%,乳液粒径分布更为均匀,材料的孔洞的D3,2由19.94μm增至23.59μm,表观密度下降,压缩模量由22.58 MPa下降到14.67 MPa。通过以GP稳定的HIPEs模板,成功制备出具有开孔和良好力学性质的亲水性多孔材料,对于多孔聚合材料在食品、生物医药上的应用具有重要意义。  相似文献   

4.
通过向黄浆水中添加多糖,使大豆乳清蛋白(WSP)与大豆种皮多糖(SHP)发生静电相互作用形成聚合物,用于制备稳定的高内相乳液(HIPEs)。结果表明:随着多糖添加量的增加,聚合物中多糖含量增加,蛋白质含量降低,聚合物微观结构更加致密,热稳定性提高。通过傅里叶变换红外光谱、扫描电子显微镜、差示扫描量热仪测定WSP和SHP之间存在静电相互作用。此外,研究证实SHP/WSP聚合物可以稳定75%油相的HIPEs,且随着SHP/WSP聚合物中多糖含量增加,HIPEs表观黏度增加,G''和G''增加。通过测定热处理或冻融前、后HIPEs的流变及多重光散射,证实SHP/WSP聚合物稳定HIPEs具有良好的热稳定性,且冻融后重新剪切可再次形成稳定的HIPEs。本研究结果为黄浆水的利用提供了新思路,也为蛋白多糖聚合物稳定乳液方面的研究提供理论参考。  相似文献   

5.
陈雅琪 《中国油脂》2021,46(6):48-52
采用高压均质法,以乳清分离蛋白为乳化剂制备南瓜籽油乳液,对均质压力、均质次数、乳化剂添加量以及南瓜籽油质量分数对南瓜籽油乳液粒径、多分散系数(PDI)、Zeta电位和分光比(SRI,800 nm下吸光度与400 nm下吸光度的比值)的影响进行考察,并研究了南瓜籽油乳液的稳定性。结果表明:南瓜籽油乳液的最佳制备工艺条件为均质压力50 MPa、均质次数5次、乳化剂添加量2.5%、南瓜籽油质量分数10%,在最佳工艺条件下,南瓜籽油乳液的粒径为(213.33±5.60)nm,PDI 为0.215±0.002,Zeta电位为(-5680±0.66)mV,SRI为 0.27±0.02;在15 d的室温储藏期间内南瓜籽油乳液具有较好的物理稳定性和较高的氧化稳定性。  相似文献   

6.
以小麦醇溶蛋白和卵磷脂为原料,利用pH循环法制备小麦醇溶蛋白/卵磷脂复合纳米粒子,并以此为稳定剂制备Pickering乳液。探究了纳米粒子质量分数、油相体积分数对Pickering乳液的粒径、微观形貌、乳析稳定性、储藏稳定性及流变学特性的影响。结果表明:制备的Pickering乳液为水包油型乳液。当小麦醇溶蛋白/卵磷脂质量比为2∶1时,Pickering乳液的乳化活性和乳化稳定性分别为9.33 m2/g和93.33%。固定油相体积分数为50%,当纳米粒子质量分数由0.1%增加到2.0%时,Pickering乳液的粒径由56.19μm减小到36.57μm,乳析指数由46.5%增加到91.0%;固定纳米粒子质量分数为1.5%,当油相体积分数由20%增加到60%时,Pickering乳液的粒径由31.43μm增大到38.79μm,乳析指数由54%增加到93%。流变学结果表明,乳液的表观黏度和弹性性能随着纳米粒子质量分数以及油相体积分数的增加而增加,且都具有剪切稀化的现象,形成了凝胶网络结构;环境应力稳定性实验表明,Pickering乳液具有良好的NaCl离子稳定性。  相似文献   

7.
近年来,由于食品级皮克林乳液在开发新型功能食品方面表现出潜在应用价值,关于食品级皮克林乳液的稳定剂的研究备受关注。本文主要研究了大豆纤维稳定玉米油的水包油型皮克林乳液的性质,通过测定ζ-电势、显微结构、乳液粒径变化、乳析指数、离心稳定性,分析了大豆纤维浓度(c;0.125%~1.0%,m/m)和油相质量分数(Φ;10%~40%,m/m)对乳液稳定性的影响。结果表明:Φ=10%时,随着大豆纤维的浓度增加乳液的粒径增大,絮凝程度增加,抗聚集稳定性和抗分层稳定性增强;c=0.75%时,随着油相质量分数增加乳液粒径显著增大,乳液稳定性迅速下降,且有明显油析现象出现。研究结果表明大豆纤维作为皮克林乳液的稳定颗粒有良好的潜力,对进一步深入研究大豆纤维稳定的皮克林乳液有指导意义。  相似文献   

8.
应用高压匀质法制备美藤果油水包油型乳液。以乳液的平均粒径和分散系数(PDI)为指标,探究Tween乳化剂类型、油质量分数、乳化剂添加量、剪切速率及均质压力对乳液的平均粒径以及PDI的影响。通过测量储藏期内乳液的粒径变化、油相氧化程度(过氧化值和硫代巴比妥酸含量)、液滴的自扩散系数以及游离脂肪酸含量变化,进一步探究储藏期内乳液的物理、氧化以及水解稳定性。结果表明:制备乳液的优化工艺条件为Tween60添加量1%、油质量分数10%、剪切速率16 000 r/min、均质压力40 MPa,此条件下制备的乳液平均粒径为(218. 27±2. 21) nm,PDI为0. 118±0. 002;该工艺条件下制备的美藤果油乳液在14 d的储藏期间内具有较好的耐受pH、盐离子的物理稳定性和较高的氧化稳定性,并且未发生明显的水解作用。  相似文献   

9.
本研究以不同取代度的辛烯基琥珀酸淀粉酯(OSA淀粉)为原料,将其和壳聚糖结合生成复合物,并研究了取代度对复合物官能团变化和疏水性的影响。利用复合物构建了油相体积分数分别为20%、50%、80%的OSA淀粉-壳聚糖复合基Pickering乳液,探究了不同取代度与油相体积对乳液稳定性的影响。结果表明,随着OSA淀粉取代度的提高,复合物的疏水性显著增加。当辛烯基琥珀酸酐(OSA)的添加量为2%(w/w,以淀粉干物质计),复合物的三相接触角接近90°,具有较理想的湿润性。当取代度或油相体积分数提高时,乳液粒径也随之增大,液滴分布更加均匀致密,乳液状态也更加趋向于固态;并且,油相体积分数对乳液的影响更为突出。当OSA淀粉取代度为0.00895、乳液油相体积分数为80%时,乳液的平均粒径为27.4±1.4μm,呈现良好的凝胶网络结构,在-4℃下储藏30 d后乳析指数为0,具有较高的离子稳定性和热稳定性。本研究在OSA淀粉-多糖复合基Pickering乳液的构建参数选定方面作了进一步的探索,有望推动该乳液的开发与应用。  相似文献   

10.
比较分析不同质量分数(0%、1.5%、3%、6%)乳清分离蛋白(whey protein isolate,WPI)对水包油型南极磷虾油(Antarctic krill oil,AKO)(30%,m/m)乳液理化特性、物理稳定性、流变学特性和微观结构的影响。结果表明,不添加WPI的AKO乳液平均粒径和Zeta电位值分别为516.67 nm和-14.03 mV;随着WPI质量分数从0%增加到6%,乳液平均粒径显著降低了42.28%(P<0.05),而Zeta电位绝对值显著增加了18.05%(P<0.05),乳液物理稳定性明显提高。剪切流变学测试显示,随着WPI质量分数的增加,乳液表观黏度逐渐增大。微流变学测试显示,乳液体系中WPI引入使脂滴运动速率减慢、弹性行为增加,而流动性降低。微观结构观察发现,WPI添加能够使乳液网络结构趋于完整且均一,进而束缚更多脂滴以维持乳液体系稳定;WPI质量分数达到6%时,过多的蛋白会使乳液发生絮凝,进而削弱乳液体系稳定性。因此,适量WPI添加能够减小乳液粒径、增加脂滴电斥力、提高乳液黏弹性、增强蛋白网络结构束缚等,从而有效改善AKO乳液的稳定性。...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号