首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Freezing–thawing is used as a new method to disperse montmorillonite (MMT) in dialdehyde carboxymethyl cellulose (DCMC) crosslinked gelatin-based films. The effects of freezing–thawing on the structure and properties of gelatin-DCMC-MMT films were investigated. The data of XRD indicate that freezing–thawing plays an important role in dispersing MMT into gelatin matrix and reducing the nanoparticles aggregation. The optical properties studies show that gelatin-DCMC-MMT films are very transparent and have excellent barrier properties against UV light. Freezing–thawing process decreases the transparency of films at visible region due to the better dispersion of MMT. The resulting films exhibit similar total soluble matter (TSM) values. However, the films prepared by freezing–thawing method have higher moisture content (MC), may be resulting from the more void volume obtained during the freezing–thawing process. The water vapor permeability (WVP) measurements show that the addition of MMT decreases the WVP of the films. Moreover, the freezing–thawing method can further decrease the WVP of the films. In addition, the films prepared by freezing–thawing are observed with better mechanical properties and thermal stability. The results suggest that the freezing–thawing method is beneficial to dispersing MMT into the gelatin matrix and raising the properties of DCMC crosslinked gelatin-MMT films.  相似文献   

2.
Jang Woo Park  Seung Yong Cho 《LWT》2008,41(4):692-700
Gelatin-based edible films were produced by extruding hot melt of gelatin-based resins through a die with slot orifice and followed by heat-pressed method. The resins were plasticized with glycerol, sorbitol and the mixture of glycerol and sorbitol (MGS). The effect of type of plasticizer on extruded and heat-pressed (EHP) film-forming capacity was studied, and the mechanical and water barrier properties of resulting EHP gelatin films were compared with those of gelatin films prepared by solution casting method. Stretchable films were formed when glycerol or MGS were used as plasticizer, whereas resins plasticized with sorbitol were extruded in non-stretchable sheets. Glycerol plasticized gelatin film showed the highest flexibility and transparency among the EHP films tested. Tensile strength (TS), elongation (E) and water vapor permeability (WVP) of glycerol plasticized EHP gelatin films were 17.3 MPa, 215.9% and 2.46 ng m/m2 s Pa, respectively, and EHP gelatin films had higher E values, lower TS values and higher WVP values compared to the glycerol plasticized cast gelatin films.  相似文献   

3.
为改善鱼鳞明胶膜的性能,测定添加明胶质量的0%、25%、50%、75%、100%桔子精油的可食膜的厚度、机械性能、水溶性、水蒸汽透过率、色泽、透明度和透光率、热性能、红外光谱和抑菌活性。结果表明:随着精油浓度的增加,鱼鳞明胶膜的厚度、断裂伸长率增加,拉伸强度、透光率、水溶性降低,水蒸汽透过率呈现先增加后降低的趋势;差示扫描量热法(DSC)和傅里叶变换红外光谱(FTIR)分析结果表明,鱼鳞明胶分子与桔子精油的部分成分发生相互作用,在一定程度上改善了明胶膜的热稳定性;桔子精油的添加还赋予了鱼鳞明胶膜抑菌作用。综合评价得出75%质量浓度的桔子精油添加量对鱼鳞明胶膜各项性能优化效果最好,本实验结果可为生产高性能的鱼鳞明胶膜提供理论基础。  相似文献   

4.
Gelatin film from blue shark (Prionace glauca) skin was investigated in order to utilize what is one of the most serious marine wastes in Japan. Film properties from shark skin such as tensile strength (TS), elongation at break (EAB) were evaluated. The TS of gelatin film from shark skin was affected by the protein concentration (1, 2 and 3%) of the film-forming solution (FFS). TS of the film from a 2% protein FFS was the highest. EAB and water vapor permeability (WVP) increased with increasing FFS protein concentration. WVP of shark skin gelatin was evidently low as compared to gelatin films from other fish. An increase in the FFS protein concentration decreased transparency at almost all wavelengths. Furthermore, opacity at 280 nm was characteristically high as compared to films from bony fish skin. The addition of glycerol improved flexibility and enhanced the UV barrier property at 280 nm. However, transparency at the visible range and WVP increased with increasing glycerol content.From the above, it was suggested that shark skin gelatin film technology can be applied to pharmaceutical products or rich-fat food due to its excellent water and UV barrier properties.  相似文献   

5.
Gelatin films derived from beef, pork and fish sources were manufactured by twin-screw, co-rotating extrusion. The effect of extrusion processing parameters, namely; screw speed (100–400 rpm) and temperature (90, 90, 90, 90 °C and 90, 120, 90, 90 °C) on the mechanical and barrier properties of gelatin films were studied. Increasing screw speed up to 300 rpm improved (P < 0.05) tensile strength (TS) and reduced (non-significantly) water vapour permeability (WVP) values for all manufactured gelatin films. However, the WVP of various gelatin film types was reduced (P < 0.05) when a screw speed of 400 rpm was employed. Increasing the speed of extrusion promoted (P < 0.05) increased solubility of films in water. Manufacture of films using a higher temperature profile resulted in films possessing higher puncture strengths (PS), increased water barrier properties with higher water solubility.  相似文献   

6.
Biodegradable three-layer gelatin film was obtained by heat – compression of piled dialdehyde starch (DAS) – cross-linked and plasticized-gelatin films (Ge-10DAS) outer layers and sodium montmorillonite (MMt) – plasticized – gelatin film (Ge-5MMt) inner layer. Multilayer film displayed a compact and uniform microstructure due to the highly compatible individual layers which could interact by strong hydrogen bonding. Lamination reduced moisture absorption and total soluble matter compared to the single layers while keeping transparency. Tensile strength and elastic modulus of the multilayer were 8.0 ± 1.3 MPa and 14.7 ± 2.4 MPa, which were significantly higher than values obtained for Ge-10DAS due to the contribution of the of the bio-nanocomposite inner layer. Elongation at break was not affected by lamination meanwhile it had a beneficial effect on barrier properties. Water vapor permeability (WVP) of the multilayer was 0.8 ± 0.1 × 10−13 kg m Pa−1 s−1 m−2 which was lower than those of the individual components whereas oxygen permeability was similar to that of Ge-5MMt (10.5 ± 0.4 cm3(O2) mm m−2 day−1) and lower than that of Ge-10DAS film.  相似文献   

7.
Composite films were manufactured using whey protein isolate (WPI), gelatin (G) and sodium alginate (SA) using a simplex centroid design. Tensile strength (TS), puncture strength (PT), percentage elongation at break point (E), tear strength (TT), water vapour permeability (WVP) and oxygen permeability (OP) of films were evaluated. The interactions between biopolymers showed quadratic effects (P < 0.01) on TS, E, PT, TT and WVP values. Scanning electron microscopy (SEM) was performed to investigate the microstructures of composite films. The proportion of ingredients required to produce the optimum composite films was determined to be: WPI (g):G (g):SA (g) = 8.0:12.0:5.0. Overall, films (WPIGSA-9) produced using the combination of WPI (g):G (g):SA (g) = 10.0:16.0:14.0 demonstrated the best barrier to oxygen (8.00 cm3 μm/m2 d kPa); while films (WPIGSA-1) showed the best barrier to water vapour (48.04 g mm/kPa d m2); films (WPIGSA-6) using the combination of WPI (g):G (g):SA (g) = 10.0:17.5:22.5 had the best mechanical properties of all of the experimental composite films tested.  相似文献   

8.
With the goal of improving the physico-chemical performance of fish gelatin-based films, composite films were prepared with increasing concentrations of chitosan (Ch) (100G:0Ch, 80G:20Ch, 70G:30Ch, 60G:40Ch and 0G:100Ch, gelatin:Ch), and some of their main physical and functional properties were characterised. The results indicated that the addition of Ch caused significant increase (p < 0.05) in the tensile strength (TS) and elastic modulus, leading to stronger films as compared with gelatin film, but significantly (p < 0.05) decreased the elongation at break. Ch drastically reduced the water vapour permeability (WVP) and solubility of gelatin films, as this decline for the blend film with a 60:40 ratio has been of about 50% (p < 0.05). The light barrier measurements present low values of transparency at 600 nm of the gelatin–chitosan films, indicating that films are very transparent while they have excellent barrier properties against UV light. The structural properties investigated by FTIR and DSC showed a clear interaction between fish gelatin and Ch, forming a new material with enhanced mechanical properties.  相似文献   

9.
In this study, the physical, thermal and mechanical properties of a novel edible film based on psyllium hydrocolloid (PH) were investigated. PH films were prepared by incorporation of three levels of glycerol (15%, 25%, and 35% w/w). As glycerol concentration increased, water vapor permeability (WVP), percent of elongation (E%) and water solubility of PH films increased whilst, tensile strength (TS), surface hydrophobicity and glass transition point (Tg) decreased significantly. At the level of 15% (W/W) of glycerol, PH films showed the lowest WVP values (1.16 × 10−10 g H2O m−2 s−1 MPa−1), E% (24.57%) and water solubility (47.69%) and the highest values for TS (14.31 MPa), water contact angle (84.47°) and Tg (175.2 °C). By increasing glycerol concentration, PH films became slightly greenish and yellowish in color but still transparent in appearance. This study revealed that the psyllium hydrocolloid had a good potential to be used in producing edible films with interesting specifications.  相似文献   

10.
Fish gelatin was plasticized with 20% and 25% glycerol (w/w of gelatin) and used to develop edible films by twin-screw extrusion at 110 and 120 °C followed by compression molding at 80 °C. Tensile and moisture barrier properties and glass transition temperature were then measured and compared with solution-cast films. The films extruded at 110 °C and with 25% glycerol had the highest percent elongation at break of 293 ± 27%. The water vapor permeability values of extruded films (the highest value being 2.9 ± 0.2 g mm h−1 cm−2 Pa−1) were higher than those of solution-cast films while the glass transition temperatures (Tg) of the extruded films were generally lower than those of solution-cast films. Films with 25% glycerol that were extruded at 110 °C had the lowest Tg (2.10 ± 0.31 °C). This investigation showed that extrusion processing followed by compression molding is a feasible method to produce fish gelatin films for commercial applications in a wide range of food products.  相似文献   

11.
Properties of film from cuttlefish (Sepia pharaonis) ventral skin gelatin without and with partial hydrolysis (1.2% degree of hydrolysis) incorporated with 1% ethanolic extract of cinnamon (CME), clove (CLE) and star anise (SAE) were determined. Films with different herb extracts (without and with oxidation) had higher tensile strength (TS) but lower elongation at break (EAB), compared with the control film (without addition of herb extracts) (p < 0.05). Lower water vapor permeability (WVP) and L-value but higher b- and ΔE-values were observed when the extracts were incorporated (p < 0.05). Electrophoretic study revealed that cross-linking was pronounced in films containing different herb extracts. Oxidized extracts yielded films with higher TS and WVP than those without oxidized herb extracts (p < 0.05). Generally, similar properties were noticeable for films from gelatin with and without partial hydrolysis. Nevertheless, higher mechanical properties were obtained for the latter. FTIR spectra indicated that protein–polyphenol interactions were involved in the film. Thermo-gravimetric analysis revealed that films incorporated with SAE or SAE with oxidation (OSAE) exhibited lower heat susceptibility and weight loss in the temperature range of 50–600 °C, compared with control film. Films with SAE and OSAE had smoother surface for gelatin without hydrolysis; however, coarser surface was observed in film from gelatin with partial hydrolysis. Thus, the incorporation of different herb extracts directly affected the properties of film from cuttlefish skin gelatin with and without hydrolysis.  相似文献   

12.
Edible films were prepared using sodium caseinate (6–8 g/100 g) and stearic acid (0–2 g/100 g). Effects of the ratio of stearic acid and sodium caseinate to water on the water vapor permeability (WVP) and mechanical properties of the prepared films were evaluated. Film-forming emulsions were also tested for rheological properties and surface tension. Changes in the ratios of sodium caseinate and stearic acid to water had significant effects on WVP (p < 0.05) and surface tension (p < 0.01). Higher values of consistency coefficient and elastic modulus were obtained in the presence of higher stearic acid. In addition, increase in stearic acid content increased the rate of water loss and gain of elastic modulus at the early stage of drying and resulted in production of less flexible film. The resultant edible film prepared with 6 g/100 g sodium caseinate and 2 g/100 g stearic acid showed the lowest WVP of 1.368 (g mm/m2 h kPa).  相似文献   

13.
The interest in the development of edible and biodegradable films has increased because it is every day more evident that non-degradable materials are doing much damage to the environment. In this research, bioplastics were based on blends of manioc starch (native and modified) and gelatin in different proportions, added of glycerol or sorbitol, which were used as plasticizers. The objective was to study the effect of two different plasticizers, glycerol and sorbitol, and different concentrations of starch and gelatin on the barrier (water vapor permeability – WVP), mechanical (tensile strength and elongation at break), physicochemical (solubility in water and in acid) and physical properties (opacity and thickness) of the obtained bioplastics samples. As a result, all of them showed transparency and resistance to tensile strength, as well as increasing in thickness values and in the WVP, as the gelatin content increased in the formulations. Finally, all results for tensile strength and elongation at break obtained for those samples plasticized with sorbitol were better than those plasticized with glycerol.  相似文献   

14.
Composite and bi-layer films based on gelatin and chitosan   总被引:2,自引:0,他引:2  
The aims of this work were: to develop composite, bi-layer and laminated biodegradable films based on gelatin and chitosan, to determine film barrier and mechanical properties and to characterize their microstructure.Gelatin and chitosan concentrations used were 7.5% and 1% (w/w), respectively. Glycerol (0.75%) was added as plasticizer.Physicochemical properties such as moisture content, transparency and color were analyzed. Composite and bi-layer systems showed a compact structure indicating a good compatibility between components.Water vapor permeability (WVP) was independent of film thickness up to 120 μm for gelatin films and 60 μm for chitosan ones. Both, bi-layer and laminated systems resulted effective alternatives to reduce WVP of composite films (at least 42.5%). Bi-layer systems showed better mechanical properties than laminated ones. The resistance at break increased from 54.3 for composite to 77.2 MPa for bi-layer films, whereas elongation at break values of both composite and bi-layer films were similar (2.2–5.7%).  相似文献   

15.
Jong-Whan Rhim  Seok-In Hong 《LWT》2009,42(2):612-172
PLA-based composite films with different types of nanoclays, such as Cloisite Na+, Cloisite 30B and Cloisite 20A, were prepared using a solvent casting method and their tensile, water vapor barrier and antimicrobial properties were tested. Tensile strength (TS), elongation at break (E), and water vapor permeability (WVP) of control PLA film were 50.45 ± 0.75 MPa, 3.0 ± 0.1%, and 1.8 × 10−11 g m/m2 s Pa, respectively. TS and E of nanocomposite films prepared with 5 g of clay/100 g of PLA decreased 10-20% and 11-17%, respectively, depending on the clays used. On the contrary, WVP of the nanocomposite films decreased 6-33% through nanoclay compounding. Among the clay types used, Cloisite 20A was the most effective in improving the water vapor barrier property while sacrificing tensile properties the least. The effect of clay concentration tested using Cloisite 20A showed a significant decrease in TS and WVP, with increases in clay content. Among the PLA/clay composite films tested, only PLA/Cloisite 30B composite film showed a bacteriostatic function against Listeria monocytogenes.  相似文献   

16.
Effects of glycerol (3-7% w/w) and sorbitol (4-8% w/w) concentration, pH (7.0, 9.0, 11.0) and heating (90 °C, 20 min) of film-forming solution (FFS) on the water vapor permeability (WVP), moisture content (MC), solubility, light transmission and transparency of pea protein isolate (PPI) films were investigated. Films plasticized with sorbitol exhibited significantly lower WVP, lower MC and higher solubility, in comparison with glycerol-plasticized films. Increasing glycerol content of the films led to increases in WVP and MC but did not affect film solubility. In contrast, increase in sorbitol content had no effect on permeability and MC but resulted in increased film solubility. Moisture sorption isotherms of PPI films suggested that the difference in WVP observed among films plasticized with glycerol and sorbitol might be due to the different hygroscopicity of these plasticizers. The pH of FFS did not have a significant effect on WVP and MC. Solubility of PPI films formed from non-heated FFS was not affected by pH, whereas solubility of films formed from heat-treated FFS generally increased when pH was increased from 7.0 to 11.0. Heating of FFS resulted in improved film transparency. All tested films were characterized by excellent ability to absorb UV radiation. Microstructural observation by scanning electron microscopy did not show differences between sorbitol- and glycerol-plasticized films.  相似文献   

17.
The effects of type and concentration of plasticizers on the mechanical properties (tensile strength, TS and elongation at break, EAB), water vapor permeability, light transmission, transparency and color of fish skin gelatin edible films from bigeye snapper (Priacanthus marcracanthus) and brownstripe red snapper (Lutjanus vitta) were investigated. At the same plasticizer concentration, fish skin gelatin films from both species plasticized with glycerol (Gly) showed the greatest EAB (P<0.05), whereas ethylene glycol (EG) plasticized films showed the highest TS (P<0.05). Films prepared from brownstripe red snapper skin gelatin exhibited slightly greater TS than those of bigeye snapper skin gelatin (P<0.05) when Gly and sorbitol (Sor) were used. EG, polyethylene glycol 200 (PEG 200) and polyethylene glycol 400 (PEG 400) affected the mechanical properties of both films differently. Films generally became more transparent and EAB, water vapor permeability (WVP), as well as light transmission of films increased, but TS and yellowness decreased with increasing plasticizer concentrations.  相似文献   

18.
Biodegradable films were developed using mungbean, waterchestnut and sweet potato starches as base raw materials. The physical and mechanical properties of the films were compared with gelatin and HPMC films. The same starches were used to develop hard capsules for utilization in the pharmaceutical industry as a substitute for gelatin or animal based products. Starches with high amylose content had excellent film and hard capsule forming abilities and properties compared to the starches with low amylase content. The starch films also had excellent oxygen barrier properties (0.048 ± 0.008 to 0.070 ± 0.009 fl m/m2 s Pa), but water barrier properties (1.1 ± 0.5 to 1.8 ± 0.4 ng m/m2 s Pa) were higher than LDPE (0.00064 ng m/m2 s Pa) synthetic polymer films. The tensile strength values of starch films (12.1 ± 0.7 to 19.0 ± 2.2 MPa) were not significantly different from gelatin (19.5 ± 1.6 MPa) and HPMC (19.9 ± 1.2 MPa) films. In the case of elongation properties, starch films had lower values (42.2 ± 7.7 to 79.4 ± 9.2%) than gelatin film (122.0 ± 14.6%), but higher than HPMC film (13.8 ± 4.2%). Molecular (SEC-MALLS) and physical (viscosity) characterization of vegetable starches, indicated that the starches with high amylose content produced better biopolymer films and capsules compared to the starches with low amylose and high amylopectin content. Biodegradable films and hard capsules for pharmaceutical applications could be developed from vegetable starches with similar physical and mechanical properties as synthetic and gelatin products.  相似文献   

19.
The effects of muscle types and washing on the properties of a protein-based film from round scad (Decapterus maruadsi) mince were investigated. Washing resulted in an increase in the protein content with a coincidental decrease in the fat content of mince, especially from whole muscle and dark muscle. Among all types of muscle (ordinary, dark and whole muscle), the ordinary muscle rendered the film with the highest tensile strength (TS) (p < 0.05). TS of films from washed mince was greater than that of films prepared from unwashed mince for the same type of muscle used (p < 0.05). Nevertheless, the water vapour permeability (WVP) of films from unwashed mince was higher than that of films prepared from washed mince (p < 0.05). Films from washed mince had higher solubility but lower protein solubility than those from unwashed mince (p < 0.05). Regardless of washing, films from ordinary muscle showed the highest L-value (p < 0.05). However, films prepared from dark muscle were more yellowish than those prepared from other muscles, as evidenced by the greater b-value. Films from round scad mince and washed mince had excellent barrier properties to UV light at the wavelength of 200–280 nm. Generally, films from round scad mince had a lower preventive effect on visible light transmission than had those from unwashed mince. Among films from all muscles, those prepared from dark muscle exhibited the highest barrier to visible light transmission (p < 0.05). Therefore, the properties of films from round scad meat were governed by muscle type as well as by washing.  相似文献   

20.
Mantle muscle meat of Japanese common squid (Todarodes pacificus) was used to produce edible films in this study. The solubility of squid mantle muscle proteins increased upon addition of NaCl and organic salts (Na-citrate, Na-benzoate, Na-acetate and Na-tartrate). At concentrations below 2%, among organic salts, Na-citrate appeared to have the highest ability to dissolve proteins. Film-forming solutions were prepared by dissolving squid mantle meat in 0.5% or 1% salt solutions at neutral pH. Physical properties and SDS–PAGE of the films were determined. The film-forming solution prepared with 0.5% Na-citrate gave the transparent film with the highest tensile strength and least degradation of myosin heavy chain. Organic salt type at the same concentration had no significant effects (p ? 0.05) on water vapour permeability (WVP) of the films. The films showed excellent UV barrier properties. In addition, organic salts gave no significant effects (p ? 0.05) on light barrier properties and transparency of the films except for NaCl and Na-tartrate which were crystallised during the drying process. These results suggested that Na-citrate is the most useful for producing the edible films from squid mantle muscle among the organic salts examined in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号