首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasticized Whey Protein Edible Films: Water Vapor Permeability Properties   总被引:10,自引:0,他引:10  
Heat treatment, protein concentration, and pH effects on water vapor permeability (WVP) of plasticized whey protein films were examined. The best film formation conditions were neutral pH, aqueous 10% (w/w) protein solutions heated for 30 min at 90°. Isoelectric point adjustment of whey protein with calcium ascorbate buffer increased WVP with increasing buffer concentration, The importance of vacuum application to minimize film pore size was identified using scanning electron microscopy. Polyethylene glycol, glycerol and sorbitol plasticizer concentration affected film WVP. Determining the effects of relative humidity on WVP for plasticized whey protein films enabled prediction of film behavior under any water vapor partial pressure gradient.  相似文献   

2.
Jang Woo Park  Seung Yong Cho 《LWT》2008,41(4):692-700
Gelatin-based edible films were produced by extruding hot melt of gelatin-based resins through a die with slot orifice and followed by heat-pressed method. The resins were plasticized with glycerol, sorbitol and the mixture of glycerol and sorbitol (MGS). The effect of type of plasticizer on extruded and heat-pressed (EHP) film-forming capacity was studied, and the mechanical and water barrier properties of resulting EHP gelatin films were compared with those of gelatin films prepared by solution casting method. Stretchable films were formed when glycerol or MGS were used as plasticizer, whereas resins plasticized with sorbitol were extruded in non-stretchable sheets. Glycerol plasticized gelatin film showed the highest flexibility and transparency among the EHP films tested. Tensile strength (TS), elongation (E) and water vapor permeability (WVP) of glycerol plasticized EHP gelatin films were 17.3 MPa, 215.9% and 2.46 ng m/m2 s Pa, respectively, and EHP gelatin films had higher E values, lower TS values and higher WVP values compared to the glycerol plasticized cast gelatin films.  相似文献   

3.
The effect of plasticizers, glycerol, sorbitol and poly(ethylene glycol) 400 (PEG 400), on mechanical and barrier properties of rice starch film has been investigated. Sorbitol‐ and glycerol‐plasticized starch films appeared homogeneous, clear, smooth, and contained less insoluble particles compared to unplasticized rice starch films. PEG 400 did not form plasticized films of suitable characteristics. The softness and stickiness of films improved with increasing concentrations of glycerol and sorbitol. In general, films plasticized with glycerol and sorbitol displayed a better solubility in water than unplasticized films, i.e. 35% (w/w) glycerol and 45% w/w (sorbitol) (optimum solubility). The tensile strength of films decreased especially in the high concentration regime of plasticizers, between 20–45% (w/w) of plasticizer/rice starch film. Through the entire concentration regime, the tensile strength of glycerol‐plasticized films was significantly lower than that of sorbitol‐plasticized films, but their elongation was larger. The water vapor transmission rate (WVTR) through plasticized films and the oxygen transmission rate (OTR) increased with glycerol and sorbitol concentrations, however, glycerol was revealed to be significantly more effective in reducing the tensile strength as well as increasing the WVTR and the OTR compared to sorbitol. With the higher tensile strength and the smaller OTR and WVTR, the 30% sorbitol‐plasticized film reveals an improved coating performance in terms of a reduction of coating failures.  相似文献   

4.
The interest in the development of edible and biodegradable films has increased because it is every day more evident that non-degradable materials are doing much damage to the environment. In this research, bioplastics were based on blends of manioc starch (native and modified) and gelatin in different proportions, added of glycerol or sorbitol, which were used as plasticizers. The objective was to study the effect of two different plasticizers, glycerol and sorbitol, and different concentrations of starch and gelatin on the barrier (water vapor permeability – WVP), mechanical (tensile strength and elongation at break), physicochemical (solubility in water and in acid) and physical properties (opacity and thickness) of the obtained bioplastics samples. As a result, all of them showed transparency and resistance to tensile strength, as well as increasing in thickness values and in the WVP, as the gelatin content increased in the formulations. Finally, all results for tensile strength and elongation at break obtained for those samples plasticized with sorbitol were better than those plasticized with glycerol.  相似文献   

5.
Gelatin film from blue shark (Prionace glauca) skin was investigated in order to utilize what is one of the most serious marine wastes in Japan. Film properties from shark skin such as tensile strength (TS), elongation at break (EAB) were evaluated. The TS of gelatin film from shark skin was affected by the protein concentration (1, 2 and 3%) of the film-forming solution (FFS). TS of the film from a 2% protein FFS was the highest. EAB and water vapor permeability (WVP) increased with increasing FFS protein concentration. WVP of shark skin gelatin was evidently low as compared to gelatin films from other fish. An increase in the FFS protein concentration decreased transparency at almost all wavelengths. Furthermore, opacity at 280 nm was characteristically high as compared to films from bony fish skin. The addition of glycerol improved flexibility and enhanced the UV barrier property at 280 nm. However, transparency at the visible range and WVP increased with increasing glycerol content.From the above, it was suggested that shark skin gelatin film technology can be applied to pharmaceutical products or rich-fat food due to its excellent water and UV barrier properties.  相似文献   

6.
The properties of porcine plasma protein-based films as influenced by some factors and pretreatment were studied. Both protein concentrations (20 and 30 g L−1) and glycerol contents (50, 60 and 70 g/100 g protein) had the impact on film properties. Film prepared from film-forming solution (FFS) containing protein (30 g L−1) and glycerol (60 g/100 g protein) possessed the highest tensile strength (TS) (2.48 MPa), while that containing protein (30 g L−1) and glycerol (70 g/100 g protein) exhibited the greatest elongation at break (EAB) (18.33%). Protein and glycerol contents affected water vapor permeability (WVP) and transparency of the resulting films. No differences in protein solubility were found among all films (p > 0.05). Pretreatment of FFS by adjusting pH (2-11) and heating at different temperatures (40, 55 and 70 °C) on the properties of the resulting films was investigated. TS and EAB became higher but WVP decreased with decreasing or increasing pH value of FFS. Heat treatment of FFS with pH 3 and 10 had no impact on TS of the resulting film (p > 0.05). On the other hand, EAB and WVP increased with increasing temperature of FFS at both pHs (p < 0.05).  相似文献   

7.
K.W. Kim    C.J. Ko    H.J. Park 《Journal of food science》2002,67(1):218-222
ABSTRACT: Tensile strength (TS), elongation (E), water vapor permeabilities (WVP) and solubilities were determined for highly carboxymethylated starch (HCMS)-based edible films plasticized with sorbitol (S), xylitol (X), mannitol (M) and glycerol (G). TS and E of HCMS-based film increased as the concentration of plasticizer S, M or × increased. TS of the HCMS-based film containing combined plasticizers were higher than those of films containing single plasticizer. The WVP of HCMS-based films seemed to decreased as the concentration of M, X or G plasticizer increased. Increasing plasticizer concentrations in HCMS-based film resulted in decreasing solubility of the films.  相似文献   

8.
Edible starch films were produced from pea starch and various plasticizers (mannose, glucose, fructose, and glycerol and sorbitol) at the ratio of 4.34, 6.50, 8.69, and 10.87 mmol plasticizer per gram of starch. After film specimens were conditioned at 50% relative humidity, mechanical properties (tensile strength, elongation, and modulus of elasticity), water vapor permeability (WVP), moisture content, and thermomechanical properties (G’ and tan8) were determined as a function of plasticizer concentration. At all concentration levels, monosaccharides (mannose, glucose, and fructose) made the starch films stronger (higher tensile strength) and more stretchable than polyols (glycerol and sorbitol), while WVP of monosaccharide‐plasticized starch films were lower than those of polyol‐plasticized starch films, especially at higher plasticizer concentration levels. Except for 4.34 mmol/g of mannose‐plasticized film, all the other films showed similar modulus of elasticity at the same plasticizer concentration. Polyol‐plasticized films had lower T than the monosaccharide‐plasticized films. Glucose‐ and sorbitol‐plasticized films needed more activation energy to go through glass transition than others. After all, research results showed that not only the polyols but also the monosaccharides were effective in plasticizing starch films. It is concluded that molecular size, configuration, total number of functional hydroxyl group of the plasticizer as well as its compatibility of the plasticizers with the polymer could affect the interactions between the plasticizers and starch molecules, and consequently the effectiveness of plasticization.  相似文献   

9.
Su-il  Park  Yanyun  Zhao 《Journal of food science》2006,71(2):E95-E101
The feasibility of using cranberry pomace extract as a new film‐forming material was studied. Cranberry pomaces were extracted using hot water. Low methoxyl pectin (LMP) or high methoxyl pectin (HMP) at a concentration of 0.50% or 0.75% (w/w) and 0.25% (w/w) sorbitol or glycerol was incorporated into film‐forming solutions (FFSs) for improving film functionality. Proximate compositions of cranberry pomace and its extract were determined. The pH and total soluble solid content (SSC) of FFSs, physical and mechanical properties, water vapor permeability, and microstructure of dried films were analyzed. About 1.4% (w/w) of solids was obtained from cranberry pomace water extracts, of which about 93% was carbohydrate. Dried films had bright red color and strong cranberry flavor. Films plasticized with sorbitol were denser in matrix structure and had higher color intensity than those of glycerol plasticized films. In general, LMP and sorbitol incorporated films had higher tensile strength and lower elongation at break and lower water vapor permeability than other films. The higher (0.75%) pectin concentration resulted in increased tensile strength, but decreased elongation at break. Scanning electron microscopy images revealed that sorbitol added films had more regular and compact cross‐section structure than those of glycerol added films. This study demonstrated that it is feasible to create natural colorful and fruit flavor edible films from fruit pomace water extracts. Depending on specific applications of the films, targeted film functionality can be achieved by incorporating proper pectin type and concentration and plasticizer into pomace extracts.  相似文献   

10.
Water solubility, hermal properties, tensile strength, percent elongation, oxygen permeability (OP), water‐vapor permeability (WVP) of cross‐linked glycerol plasticized whey protein isolate films were studied to determine the effect of cross‐linkers (glutaraldehyde, formaldehyde, dialdehyde starch, carbonyldiimidazole, and UV irradiation) on film properties. With the exception of UV treatment, solubility of the films decreased (P>0.05) upon treatment of the film‐forming solutions with chemical cross‐linkers. Tensile strength increased (P>0.05), whereas percent elongation was not affected by cross‐linking. Chemical cross‐linking increased (P>0.05) WVP and decreased (P>0.05) OP of the films. UV treatment had no effect on WVP and O P. With the exception of UV‐treated films, both onset temperature and degradation temperatures, as determined by differential scanning calorimetry, were increased upon cross‐linking.  相似文献   

11.
Tensile strength (TS), percent elongation (%E), oxygen permeability (OP), and water vapor permeability (WVP) of lactic acid and rennet precipitated casein-based edible films were studied to determine the effect of protein to plasticizer ratio (0.6:1, 1:1, 1.4:1) and plasticizer type (sorbitol, glycerol) on these properties. TS increased (p<0.05) with increase in protein to plasticizer ratio. Sorbitol plasticized films were stronger (p<0.05) than glycerol plasticized films. However, films plasticized with glycerol were more extensible (p<0.05). Film %E decreased with increase in protein/plasticizer ratio for lactic acid casein films, whereas it increased for rennet casein films. Films plasticized with sorbitol were more effective (p<0.05) moisture and oxygen barriers than glycerol plasticized films. Overall, lactic acid casein films plasticized with sorbitol had the most effective mechanical and barrier properties.  相似文献   

12.
Waxy corn starch (amylopectin) and three of its chemical derivatives: acetylated cross‐linked (ACLS), oxidized (OS), and octenyl‐succinylated (OSA), were used together with additives such as Tween 80, sorbitol, and beeswax suspension or safflower oil to test their effect on film‐forming solutions (FFS) and films. The objectives of this study were the starch structure characterization, and its correlation with rheological properties of FFS and solubility, opacity, and water vapor permeability (WVP) of the produced films. Analysis of starch structure, rheological characterization, and films micrographs revealed that the starches contained predominantly low MW amylopectin molecules and film properties depended on their ability to reorganize. Additionally, the interaction among groups introduced in modified starches or with additive molecules can hinder or promote starch reorganization, resulting in films with increased or reduced WVP, solubility and transparency properties. Films were obtained by casting and showed a thickness less than 41 µm. Films prepared with OS and beeswax exhibited the best reorganizing capacity of FFS, resulting in less soluble (30.0 ± 1.6%), highly transparent (23.2 ± 3.3 UA × nm) and less permeable films (0.485 ± 0.016 g · mm · m−2 · h−1 · kPa−1). On the other hand, ACLS showed an opposite trend which was attributed to a more open film structure. These results contribute to understand the molecular interactions of waxy starch molecules in FFS which may be useful to design tailored coatings.  相似文献   

13.
Properties of porcine plasma protein-based film incorporated with tannic acid, caffeic acid and ferulic acid at different concentrations (1–3% (w/w) of protein content) were studied. Film-forming solution (FFS) containing 3% protein (w/v) and 70% glycerol (w/w of protein content) was preheated at 70 °C for 30 min and adjusted pH to 10 followed by the addition of phenols and film casting. Tensile strength (TS) of resulting film increased by 123.3, 194.3 and 19.5% and elongation at break (EAB) increased by 71.1, 86.3 and 10.2%, respectively, compared with the control film, when tannic acid, caffeic acid and ferulic acid at a level of 3% was added. The use of all phenolic compounds slightly increased water vapor permeability (WVP) of resulting films (p < 0.05). The increases in a- and b-values of films were observed as the higher concentrations of tannic acid and caffeic acid were used. This was associated with the lowered transparency of resulting films. FFS containing 3% caffeic acid with prior oxygenation, especially with pH 10, yielded the film with increased TS but lowered EAB (p < 0.05). Oxygenation of FFS was associated with the lower L-value and higher a-value of resulting films. Therefore, phenolic compounds could be used as natural cross-linkers which affected the properties of porcine plasma protein-based film differently.  相似文献   

14.
Plasticization of Pea Starch Films with Monosaccharides and Polyols   总被引:4,自引:0,他引:4  
ABSTRACT:  Monosaccharides have several hydroxyl groups and a compatible structure with starch polymers resulting in effective plasticization in starch films. Two groups of plasticizers (polyols and monosaccharides) were used to compare their plasticizing efficiency. Fructose, glucose, mannose, galactose, glycerol, sorbitol, ethylene glycol, and maltitol were selected at 13.031 mmol per 100 g of pea starch. Edible starch films were produced after heat gelatinization and dehydration of the 3% starch dispersion. The microstructure, attenuated total reflection foorier transform infrared (ATR-FTIR) characteristics, thickness, moisture content, tensile strength, modulus of elasticity, elongation-at-break, water vapor permeability, and transparency of films were determined. Microstructure of the film solutions showed that some swollen starch granules and their remnants existed in the film. Compared to the FTIR spectra of pure starch films, the spectra of plasticized films showed that more hydrogens bound hydroxyl groups and more water molecules were attracted around starch polymer chains. Ethers were produced in glycerol-plasticized films. Monosaccharide-plasticized films were comparable to the polyol-plasticized films in tensile test, but more resistant in moisture permeation than the polyol-plasticized films. It was assumed that the structural compatibility of monosaccharides with starch might result in denser polymer-plasticizer complex, smaller size of free volume, and less segmental motions of starch chains. In conclusion, monosaccharides were identified as effective plasticizers for starch film.  相似文献   

15.
Sago starch films were plasticized with sorbitol, glycerol, or a combination of sorbitol/glycerol (1:1, 1:3, and 3:1 ratios) and the effects on the thermal properties and heat sealability of the films were investigated. Films were sealed with an impulse heat sealer at a dwell time of 1 s and temperature of 110 ± 10 °C. Thermal properties of the films (determined using a differential scanning calorimeter) showed that onset temperatures (To) of sorbitol-plasticized films were significantly lower than those of glycerol-plasticized films. All films were heat sealable, but sorbitol-plasticized films exhibited better heat sealability than did the glycerol type. The highest seal strength was obtained with a 3:1 combination of sorbitol/glycerol. In summary, the type of plasticizer governed the heat sealability as well as the seal strength of starch films.  相似文献   

16.
以高直链玉米淀粉(HACS)和壳聚糖(CS)为基本材料,甘油为增塑剂,甲基纤维素(MC)为增强剂制备可食性复合膜,研究高直链玉米淀粉与壳聚糖的质量比,甘油的添加量以及甲基纤维素的添加量对复合膜物理性能的影响,包括抗拉强度(TS)、断裂伸长率(E)、水蒸气透过系数(WVP)和色度。结果表明,壳聚糖添加量的增大与甘油添加量的增加都使高直链玉米淀粉- 壳聚糖复合膜的抗拉强度降低,断裂伸长率和WVP 显著增大,膜颜色变黄;甲基纤维素的添加改善了复合膜的机械性能和WVP,随着甲基纤维素添加量的增加,复合膜的抗拉强度和断裂伸长率都随之增大,WVP 逐渐降低,且对膜的颜色没有显著影响。  相似文献   

17.
The effects of type and concentration of plasticizers on the mechanical properties (tensile strength, TS and elongation at break, EAB), water vapor permeability, light transmission, transparency and color of fish skin gelatin edible films from bigeye snapper (Priacanthus marcracanthus) and brownstripe red snapper (Lutjanus vitta) were investigated. At the same plasticizer concentration, fish skin gelatin films from both species plasticized with glycerol (Gly) showed the greatest EAB (P<0.05), whereas ethylene glycol (EG) plasticized films showed the highest TS (P<0.05). Films prepared from brownstripe red snapper skin gelatin exhibited slightly greater TS than those of bigeye snapper skin gelatin (P<0.05) when Gly and sorbitol (Sor) were used. EG, polyethylene glycol 200 (PEG 200) and polyethylene glycol 400 (PEG 400) affected the mechanical properties of both films differently. Films generally became more transparent and EAB, water vapor permeability (WVP), as well as light transmission of films increased, but TS and yellowness decreased with increasing plasticizer concentrations.  相似文献   

18.
Edible films were prepared from whey protein isolate (WPI), and characterized in order to select a best combination of protein concentration and glycerol (Gly) ratio. 5%, 7% and 9% (w/v) WPI were used at three WPI:Gly ratios (3.6:1; 3:1; and 2:1). 5% WPI with a 3.6:1 WPI:Gly ratio showed the best combination with factors considered being thickness and water vapor permeability (WVP), while the 9% WPI with 3.6:1 WPI:Gly showed the best result as seen from the oxygen permeability (OP). Further studies were conducted by adding pullulan (PUL) at different WPI:PUL ratios (1:0; 1:1; 2:1; 3:1; 4:1; 5:1; 6:1; 8:1; 10:1) to a selected film in order to investigate the effect of pullulan on thickness, OP, WVP, moisture content (MC), film solubility (FS) and morphology using scanning electron microscopy (SEM). WPI–PUL film had a good appearance and 1:1 WPI:PUL resulted in films with greatest values of OP, WVP, MC, FS, and transmittance. The SEM micrographs showed many pinholes and a favorable structure for the low barrier ability. However, addition of PUL at low concentration was good enough to significantly modify these properties, hence improving the potential characteristics of WPI-based films for food applications.  相似文献   

19.
The effect of glycerol on the mechanical and water barrier properties, as well as on the water solubility, of fish gelatin–chitosan films (4:1, w/w) cross-linked with TGase or EDC was determined. The addition of glycerol in concentrations up to 30% (of the substrate mass) to the fish gelatin–chitosan films modified with TGase or EDC did not change their solubility in buffers of pH 3 and 6 at 25 °C or during heating at 100 °C for 60 min. The chemical and enzymatic cross-linking of the components did not increase the water barrier properties of the films. WVP of the films modified with EDC and TGase was not affected by glycerol at concentrations up to 25% of the substrate mass. Tensile strength of the films decreased after modification of the components with TGase or EDC, respectively, by about 25% and 40%. The elongations of the enzymatically modified films containing 20% of glycerol and of chemically modified films containing 15% of glycerol were, respectively, about 8 and 13 times higher than those of unplasticized films; however, the tensile strengths of plasticized films were, respectively, 2.5 and 5 times lower.  相似文献   

20.
Water barrier and mechanical properties were measured for soy protein isolate (SPI) films plasticized with glycerol (GLY) and 1 of the plasticizers (propylene glycol [PG], polyethylene glycol [PEG], sorbitol [SOR], or sucrose [SUC]) at a ratio of 25:75, 50:50, 75:25, and 0:100. Plasticizer type as well as the plasticizer ratio in the GLY: plasticizer mixtures affected the film water barrier and mechanical properties. An addition of as little as 25% of a less hygroscopic plasticizer in the mixture induced significant reduction in water vapor permeability (WVP) of SPI films. However, at least 50% of the mixture needs to be GLY to show significant improvement in tensile strength (TS). From our experimental design, 50:50 GLY:SOR was the recommended combination because of its comparatively low WVP value and relatively high flexibility and strength. Incompatibility of GLY:PEG plasticizer mixture in SPI film was observed by surface migration of PEG from the film matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号