首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
在生物质化学链气化反应基础上设计并搭建了一套串行流化床冷态模型。以石英砂为床料、空气为流化介质在该装置上开展了压力分布及控制规律实验研究。采用PY500型智能压力检测系统及PV-6型激光颗粒速度测量仪着重研究了空气反应器、燃料反应器、气体密封室等部件的表观气速对循环状态的影响。实验结果表明,颗粒在提升管中流动为环核型结构,平均空隙率轴向先增大后减小,装置适宜的操作状态为燃料反应器流化气速1.2m/s~2.0m/s,空气反应器气速1.4m/s~1.7m/s,返料管气速为0.4m/s~0.85m/s,两反应器存料量2.5kg~4.5kg。  相似文献   

2.
在冷态提升管装置和热态工业循环流化床装置上,考察了表观气速和焦炭颗粒循环速率对提升管中部稳定区颗粒含率的影响。研究结果表明,冷态条件下焦炭颗粒循环速率较低(20~250 kg/(m~2·s)),提升管稳定区的颗粒含率小于0.12,且相同循环速率下,颗粒含率随表观气速的增大而减小;热态条件下焦炭颗粒循环速率较高(200~450 kg/(m~2·s)),在表观气速为10.50~13.20 m/s时,提升管稳定区颗粒含率小于0.35,并回归出冷热态条件下颗粒含率和极限颗粒含率的关联式。对冷热态相同表观气速和颗粒循环速率条件下的颗粒含率进行比较,工业装置的颗粒含率大于冷态实验的颗粒含率。  相似文献   

3.
在不同操作条件下,采用PV-4A型颗粒速度、密度测定仪测量了提升管与流化床耦合反应器大型冷态实验装置提升管内速度沿轴向、径向的分布。结果表明,在耦合流化床反应器提升管段,当表观气速一定时,颗粒的时均速度随循环强度的增加而减小;当循环强度相近时,在床层任何轴向、径向位置的颗粒时均速度都随着表观气速的增大而增大。由于提升管出口流化床层及分布器的存在,提升管内轴向速度呈现先增加后减小的分布特征。利用实验数据回归的提升管内颗粒滑落系数的经验模型计算值与实验值吻合较好  相似文献   

4.
以催化裂化平衡剂为固体介质、常温空气作为流化气体,在循环流化床冷态模拟试验装置上分别考察了表观气速、颗粒贮量、下料蝶阀开度、预提升气量等操作条件对循环流化床反应器催化剂循环速率的影响,并探讨了产生这种影响的原因;同时,深入研究了预提升出口位置对系统内催化剂循环速率、提升管底部轴向、径向颗粒浓度分布的影响,并描述了气固两相交汇点处的微观流动结构。结果表明:随着操作气速的升高,气、固相之间的相互作用增强,颗粒循环速率提高;伴床及蝶阀通过提供足够的压力支持提升管内的两相流动,增加颗粒贮量或减小蝶阀压降可有效提高颗粒循环量;通入预提升气可增大颗粒向前运动的推动力,避免颗粒发生坍落而沉积于床层底部;当伴床向提升管提供足够的颗粒循环速率时,预提升出口位置的提高破坏了颗粒的向下流动,迫使颗粒进入中心快速向上的气固流动区,从而改变气、固相交汇点处的流动结构;另外,不同预提升结构对颗粒浓度的影响有限,并未从根本上改变轴向、径向颗粒浓度的分布规律。  相似文献   

5.
以催化裂化平衡剂和常温空气为介质,在新型双循环流化床冷态模拟装置上,考察了单、双侧下料结构、双路循环颗粒循环速率比例对提升管内气固流动状态的影响,并提出了一种新的气固接触效率的定义。结果表明:单、双侧下料结构的不同对提升管内颗粒浓度的分布影响不大,其差异主要体现在提升管预提升区和底部反应区;双侧下料时的颗粒浓度径向分布均匀性明显优于单侧下料,且两路颗粒循环速率越接近,颗粒浓度径向分布越均匀,轴对称性越好,气固接触效率越高;降低表观气速或增大颗粒循环速率均有利于提高气固接触效率。  相似文献   

6.
在高10.6m、内径100mm的循环流化床冷态模拟实验装置上研究了底部预提升气以及喷嘴进气量对循环流化床反应器循环量的影响,对比了3种不同喷嘴位置结构下系统循环量的变化情况以及提升管底部和喷嘴附近气固流动行为的差异,描述了预提升段内气体分布及流动结构。结果表明:预提升气和喷嘴进气是颗粒向上输送的重要推动力,随着喷嘴进气口高度的提高,预提升气对颗粒循环速率的作用效果愈加明显;对于喷嘴进气口位置最低的结构,其系统循环量、喷嘴附近颗粒浓度以及气固接触状况均优于其它结构;在提升管底部,气体多次形成逆流接触,内循环流动和局部涡流作用有效促进了颗粒沿径向混合,有利于颗粒循环量的提高。  相似文献   

7.
在颗粒循环强度(G_s)为32.65~84.59kg/(m~2·s)、固/气比(Gs/(ρ_g·U_g))为9.22~47.95的操作条件下,对变径组合提升管浓相区颗粒流动特性进行了实验研究,并与以往高密度循环流化床和循环湍动流化床对比。结果表明,变径组合提升管浓相区各局部位置均存在上行与下行颗粒;随着无因次半径增加,局部时均固含率和颗粒返混比增加,局部颗粒速度及颗粒质量净流率则降低。当Gs/(ρg·Ug)在27~47.95范围,各截面平均固含率基本不再随其变化而变化,变径组合提升管浓相区进入高密度操作状态,对应局部时均颗粒速度和颗粒质量净流率均向上。在高密度操作下,变径组合提升管在局部流动特性上与循环湍动流化床相近,在截面平均及浓相区整体流动特性上与高密度循环流化床相近。  相似文献   

8.
提升管与流化床耦合反应器内固含率的轴向分布   总被引:1,自引:1,他引:0  
针对催化汽油辅助反应器改质降烯烃工艺,结合提升管与流化床的特点,建立了一套提升管与流化床耦合反应器大型冷态实验装置。在不同操作条件下,采用多点压力密度仪测定了提升管内轴向压力梯度及截面平均固含率沿轴向的分布规律。结果表明,提升管内固含率的轴向分布呈上下两端大、中间小的C型分布特征,颗粒在提升管内沿轴向的运动可分为颗粒加速区、充分发展区和颗粒约束返混区;提升管内截面平均固含率随颗粒循环强度的增大而增大,随表观气速的增大而减小,提升管出口的流化床内颗粒静床高度只对颗粒约束返混区固含率有影响,而对颗粒约束返混区长度及颗粒约束返混区以下区域固含率影响较小。利用实验数据回归出了提升管内截面平均固含率的轴向分布及颗粒约束返混区最大颗粒返混比的经验模型,其计算值与实验值吻合较好。  相似文献   

9.
以18m提升管反应器为研究对象,基于压力数据研究了提升管内的气-固流动轴向分布特性。该18m实验装置操作弹性较大,当表观气速为5~9m/s时,颗粒循环速率可以在150~550kg/(m~2·s)之间控制操作。在表观气速为5m/s,颗粒循环速率达到400kg/(m~2·s)以上时,提升管反应器所有轴向高度的平均固含率均在0.1以上,表明整个提升管反应器达到了高密度操作状态。提升管内固含率的轴向分布呈指数型分布特点,与多段式分布特性存在一定的差异。此外,系统研究了操作条件对固含率轴向分布的影响。结果表明,颗粒循环速率的增加或表观气速的降低,均有助于提高提升管内各截面的固含率。  相似文献   

10.
应用气固两相流动的格子Boltzmann-离散颗粒运动模型,气体流动采用格子Boltzmann方法的D2Q9模型,固体颗粒运动采用牛顿第二运动定律计算,壁面采用具有二阶计算精度的半步长反弹边界条件,数值模拟了循环流化床提升管内颗粒团聚物的运动过程。模拟结果表明,颗粒团聚物的气固相间曳力系数随颗粒团聚物的空隙率和雷诺数的增大而减小;拟合得到基于格子Boltzmann方法的气固相间曳力模型;采用基于格子Boltzmann方法的气固相间曳力模型的欧拉-欧拉双流体模型模拟循环流化床提升管内颗粒相密度和颗粒质量流量径向分布,模拟结果与实验结果很接近。  相似文献   

11.
丙烯氨氧化循环流化床反应器数学模型   总被引:4,自引:1,他引:3  
在修正现有丙烯氨氧化反应网络的基础上,采用一维扩散模型对丙烯氨氧化合成丙烯腈循环流化床提升管反应器进行了模拟计算,得到了反应产物轴向浓度分布和操作条件对丙烯腈收率的影响,考察了返混对丙烯腈收率的影响和循环流化床作为丙烯腈合成反应器的效果。  相似文献   

12.
化学链技术是一种清洁高效的新型技术。煤、石油焦、生物质等固体原料的化学链技术处于初步研发阶段。氧载体的研发、反应器的研制和工艺性验证试验是核心研究方向。双组分化学链氧解耦(CLOU)材料可以在反应条件下解离出气相氧,提高反应速率,是未来氧载体的研发方向。流化床燃料反应器反应速率高、易于放大,移动床燃料反应器原料转化率高、气体产物纯度高。这2种燃料反应器模式都将继续发展、完善,并会长期共存。催化气化技术可以提高焦炭的气化速率,有望解决固体原料转化率低、反应速率慢等难题,从而促进固体原料化学链技术的发展,而化学链部分氧化技术也有望发展成为先进的固体原料气化技术,并且拥有十分广阔的应用前景。  相似文献   

13.
针对石油炼制装备中所涉及的组合气-固环流床和常规气-固环流床,通过大型冷模实验对二者整体流动特性和局部流动特性进行了对比研究。结果表明:在导流筒区表观气速、环隙区表观气速和床层内颗粒静床高度相同的条件下,组合气-固环流床和常规气-固环流床的导流筒区整体平均固含率、环隙区整体平均固含率及两区整体平均固含率差差别较小,组合气-固环流床内的颗粒环流速度较大。在床层各区域局部流动特性上,在分布器区和导流筒区下部,组合气-固环流床的局部固含率和颗粒速度均较大;在导流筒区中部,二者的局部固含率和颗粒速度均差别较小;在导流筒区上部和气固分离区,组合气-固环流床的局部固含率较小,颗粒速度较大;在环隙区,二者的局部固含率差别较小,而组合气-固环流床的颗粒速度较小。  相似文献   

14.
聚丙烯卧式搅拌床反应器料面倾斜角的声发射检测   总被引:1,自引:0,他引:1  
采用声发射检测技术测量聚丙烯卧式搅拌床反应器的料位分布,从而确定其料面倾斜角。在冷模装置中系统考察了加料系数、搅拌转速、粉料性质以及底部循环气对料面倾斜角的影响。实验结果表明,加料系数、粉料性质和搅拌转速决定料面倾斜角的大小,而底部循环气无影响。在此基础上,通过引入加料系数、速度数、加料数等无因次变量,建立了料面倾斜角的预测模型,其预测结果相对误差不超过4%,可用于聚丙烯卧式搅拌床反应器料面倾斜角的计算。  相似文献   

15.
An experimental installation of cold model simulation was set up to study the bed pressure drop in different regionsof fixed fluidized bed reactor during top feeding and bottom feeding, respectively, at various gas velocities with thefluidization image of solid particles monitored at the same time. By comparing the changes in bed density and operating gasvelocity in different regions of fixed fluidized bed reactor, the influence of top feeding and bottom feeding patterns on fluidizationbehavior could be investigated. The results showed that the bed density in top feeding reactor responded more stablyto the change in gas velocity along with the advantage of working in a wider range of operating gas velocities. Based on thisstudy, it is concluded that existing bottom feeding reactor configurations cannot meet the fluidization requirements; and optimizationof bottom feeding reactor will be needed.  相似文献   

16.
在FCC提升管流化床冷模实验装置上,以空气-FCC催化剂两相体系为研究对象,在不同的操作条件下分别考察了在提升管不同高度分层注入催化剂对提升管内催化剂流动特性的影响。结果表明,注料影响区域在注料入口至其上下部0.3~0.5 m内,在提升管一定高度处注入催化剂可明显改善提升管轴向催化剂密度、径向催化剂密度和径向催化剂颗粒速度分布的均匀性,尤其是在r/R<0.6的中心区域,这种改善表现尤为明显。两点同时注入催化剂对提升管内催化剂流动特性的改善效果较单点注入催化剂的改善效果更加明显。  相似文献   

17.
选用钛铁矿为载氧体、伊敏褐煤为燃料,基于质量平衡、能量平衡、反应动力学模型和流态化理论,开展了热输入功率为10 MWth的煤化学链燃烧反应器的热力计算,获得了自热条件下的反应器尺寸、热量平衡参数等数据。结果表明:空气反应器为快速流化床,床高为38.9 m,横截面积为1.64 m2,表观气速为4.74 m/s,平均载氧体循环流率为57.45 kg/s;燃料反应器为鼓泡流化床,床高为13.4 m,横截面积3.76 m2,表观气速为1.91 m/s,平均载氧体循环流率为56.66 kg/s。空气反应器中,载氧体放出大量的热,其中钛铁矿载氧体携带的显热为4732.63 kJ/kg,占总放热量的40.73%;在燃料反应器中,钛铁矿放出热量为4996.9 kJ/kg,气体吸收的热量占62.94%。该结果为以煤为燃料的化学链燃烧热态系统的设计建造提供了参考。  相似文献   

18.
在空气-水-石英砂三相多室气升式环流反应器(MALR)中,依据能量平衡原理及漂流通量模型,考虑到三相流动中固体颗粒相互作用产生的能量损失,建立了上升室气含率和循环液速的预测模型。在表观气速1.2~4.2cm/s范围内,研究了气含率、固含率、循环液速随操作条件的变化规律。结果表明,气含率随着表观气速的升高先增大后趋于平缓;固含率与表观气速的关系不大,只是随着固体装载量的增加而增大;循环液速随着表观气速的升高先增大而后略有下降,随着固体装载量的增加而减小。最后用实验结果对所建立的模型进行了验证。  相似文献   

19.
This paper introduces two laboratory evaluation methods for catalytic pyrolysis of heavy oil, using a fixed bed microreactor unit and a confined fluidized bed reactor unit as experimental equipment, respectively. Cracked gas was measured by HP6890 gas chromatograph, cracked liquid was analyzed by simulated distillation gas chromatograph and chromatograph-mass spectrograph, and coke on catalysts was determined by a coke analyzer. The results show that a fixed bed microreactor unit and a confined fluidized bed reactor unit have good repeatability and good relativity for catalytic pyrolysis of heavy oil. A fixed bed microreactor unit is relatively easy to operate and can be used to select catalysts and operation conditions primarily, while a confined fluidized bed reactor unit is in favor of the production of objective products and can be utilized to study operating conditions in detail.  相似文献   

20.
变径提升管内颗粒流动特性的研究   总被引:2,自引:1,他引:1  
采用提升管冷模实验装置,对40mm/20mm和24mm/12mm两种变径提升管和一种20mm单一直径提升管内的颗粒流动特性进行实验。考察了颗粒循环速率(Gs)和气速对变径提升管平均固含率(εs)和截面平均颗粒速度(Up)的影响。实验结果表明,采用变径提升管可改变固含率(εs)和Up分布;40mm/20mm变径提升管扩径段εs保持在0.1~0.3之间;提高Gs或降低气速,截面径向各点的εs都增大。提高Gs会导致Up增大。增大气速对扩径段Up的影响不明显,但会明显提高缩径段的Up。40mm/20mm提升管扩径段εs达到0.20以上,比24mm/12mm提升管扩径段的εs提高30%。相同气速和Gs下,40mm/20mm提升管扩径段底部的εs达到0.25,是20mm提升管的2~3倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号