首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
国内某炼油厂煤油加氢装置与柴油加氢装置联合布置,联合装置长周期运行中针对柴油加氢新氢压缩机氯化铵腐蚀隐患;煤油加氢原料/反应产物换热器结垢、结盐,反应加热炉热负荷高,系统冷却能力偏低;柴油加氢装置原料/反应产物换热器串漏,柴油加氢热高分气/循环氢换热器腐蚀内漏等问题。提出了:煤油加氢反应产物换热器增加注水设施,单独增加循环氢压缩机,氢气混合后增设缓冲罐(内装填料);柴油加氢装置通过优化操作,降低原料/反应产物换热器管壳程差压,使用双金属自密封波齿垫代替波齿复合垫,优化补充氢气流程及将换热器管束材质升级为S32707超级双相钢等措施。解决联合装置长周期运行的问题。  相似文献   

2.
柴油加氢改质装置反应流出物/反应进料高压换热器由于操作温度低,导致氯化铵在换热器管束(0Cr18Ni10Ti)内结晶析出,造成垢下腐蚀。通过分析该换热器腐蚀原因,从工艺操作和设备防腐角度,提出了延长换热器管束使用周期的建议。  相似文献   

3.
胜利炼油厂重油加氢 (VRDS)装置的常压分馏塔为填料塔 ,2 0 0 1年检修开工后该系统出现异常 ,经过查找分析 ,确定轻烃 /产品减压渣油换热器和柴油汽提塔重沸器内漏是装置异常的主要原因  相似文献   

4.
柴油加氢装置高压换热器由于原料含氯、带水、操作温度低等原因,导致氯化铵在高压换热器管束(0Cr18Ni10Ti)结晶析出,引发换热器管束内漏,导致装置被迫停车抢修。通过分析高压换热器腐蚀原因,从优化工艺操作角度出发,提出有效控制原料氯质量浓度小于2 mg/L;尽可能降低原料水含量;提高高压换热器出口温度至240℃以上等措施来有效延长换热器管束使用周期。建议通过调整工艺操作温度等参数,控制结盐处在合理的位置区域,解决结盐引起的压力降上升、换热效率降低、压缩机喘振等危害;通过科学的注水(含注水量、注水方式、注水喷头设计)和洗涤,解决结盐引起的腐蚀泄漏等危害,确保加氢装置安全、稳定、长周期运行。  相似文献   

5.
针对某焦化汽油和柴油加氢装置螺纹锁紧环换热器在运行过程中出现的内漏问题,对换热器结构和相关操作参数进行分析,判断造成换热器E101A发生内漏的主要原因为E101A壳程入口温度由185℃下降至165℃,由于换热温度降低导致壳程密封垫片回弹能力不足,密封比压不够而多次发生泄漏。对换热器进行在线紧固仍不能解决换热器内漏问题,后通过工艺调整提高E101A管程、壳程入口温度,经过长期运行表明,E101A未再发生内漏,有效解决了E101A由于换热温度降低而导致内漏的问题。  相似文献   

6.
某公司2号汽柴油混合加氢装置原料S、N、Cl杂质含量较高,自开工以来反应产物/低分油高压换热器E102A多次发生腐蚀泄漏。从该换热器的泄漏现象、腐蚀原因、改进措施三方面进行分析认为,换热器的腐蚀泄漏是由管程内NH_4Cl盐垢板结引起的,进而引起管束的垢下腐蚀,加氢原料有机氯含量高是引起高压换热器结垢和腐蚀的主要原因,保证合理的注水量和注水水质是解决高压换热器管程腐蚀的关键,在高压注水中加入高温缓蚀阻垢剂,可以有效减缓加氢装置高压换热系统的结垢和腐蚀。  相似文献   

7.
本文介绍了200万吨/年柴油加氢装置高压换热器E102大检修前的运行状况,通过aspen模型对E102传热系数的模拟核算,评价了装置高压换热器运行中可能存在的结垢腐蚀问题;结合2020年8月大检修期间对E102的拆检情况,分析了加氢高压换热器结垢腐蚀的原因[1-4];由于大检修期间对E102进行了彻底的检修清理,装置开工后,高压换热器传热系数得到很大提高,热端温差大幅降低,反应系统运行状况得到较好改善,为装置长周期安全稳定运行奠定了良好基础。  相似文献   

8.
介绍兰州石化公司炼油厂300万吨/年柴油加氢装置自2012年6月开工以来,反应系统压降逐渐增大,分馏系统取热不足等情况,结合2013年3月装置检修时对换热器的检查,通过对结晶物采样分析确定反应系统压降增大的原因为高压换热器铵盐结晶,并对换热器出现铵盐结晶的现象及结晶形成过程进行深入分析.  相似文献   

9.
某公司蜡油加氢装置热高分气/混合氢换热器E5102在运行9 a后发生内漏,导致装置被迫紧急停工检修。检修结束后,对管束的腐蚀泄漏原因进行分析。通过宏观观察、管束测厚、元素分析及离子分析,结合工艺模拟计算、腐蚀机理分析和注水情况分析,认为管程NH4Cl结盐导致垢下腐蚀、注水冲洗不彻底及注水方式不合理是引起换热器腐蚀泄漏的主要原因,并提出了改进措施及建议,希望对各企业预防加氢装置热高分气/混合氢换热器的腐蚀泄漏有一定帮助。  相似文献   

10.
某石化公司汽柴油加氢装置由于原料含氯,重整氢和新氢中氯化氢含量超标,导致氯化铵在高压换热器管束(Incoloy 825)结晶析出,引发换热器管束腐蚀内漏,甚至装置被迫停工抢修。通过分析高压换热器腐蚀原因,提出以下防护措施:有效控制原料氯质量浓度小于1 mg/L,提高高压换热器出口温度到215℃及以上,将两路连续注水方式改为一路连续注水并适当增加注水量。采取这些措施后有效地延长了换热器管束使用周期。  相似文献   

11.
介绍了隔膜密封式高压换热器的结构、特点及密封原理,对1.4 Mt/a柴油加氢装置高压换热器泄漏的原因进行了详细分析。针对该换热器管程进口法兰螺栓紧固不到位、密封盘倒角处的泄漏问题,采取了相应的处理措施,消除了安全隐患,确保了装置的长周期安全平稳运行。  相似文献   

12.
某加氢装置原料油与反应产物高压换热器(E1103AB)换热效率下降,导致反应加热炉负荷偏高,严重制约装置加工负荷的提高,影响物料平衡以及成品柴油调和。针对该问题,从换热器换热面积核算、换热器管程隔板脱焊、铵盐结晶等方面进行分析,采取相应措施,减缓了高压换热系统结垢,避免换热器热效率下降。  相似文献   

13.
由中国石化工程建设有限公司、中国石化石油化工科学研究院、石家庄炼化分公司和安庆炼化分公司共同开发的连续液相加氢技术是中国石化"十条龙"攻关项目之一,具有产品质量好、装置投资低、能耗低等优点。安庆炼化分公司2.20 Mt/a连续液相柴油加氢装置以常减压装置的直馏柴油和焦化装置的焦化柴油为原料,在高温高压、氢气以及催化剂的作用下脱除原料中的硫、氮等杂质,生产出硫质量分数低于50μg/g的优质柴油产品。详细介绍该装置的工艺流程、特点及首次开工的过程,对开工过程中存在的问题进行了分析,为后续采用连续液相加氢技术的柴油加氢装置的开工提供借鉴。  相似文献   

14.
柴油加氢装置加工的原料劣质化也日益明显,掺炼焦化柴油的比例也逐渐增大,由于焦化柴油杂质及粉尘颗粒含量较多,易导致换热器结垢,影响换热效果,严重时造成装置被迫停工,影响柴油加氢装置的长周期运行。探讨了柴油加氢装置高压换热器结垢的腐蚀、结垢机理,重点分析了使用JAF-2型阻垢剂对柴油加氢装置的阻垢效果。通过该剂种的长期使用,以及操作参数及产品性质的前后对比结果,表明该阻垢剂阻垢效果显著,能有效降低高压换热器结垢风险;对催化剂的活性以及装置目的产品的质量没有影响,从而保证装置的长周期运行。  相似文献   

15.
柴油加氢技术工程化的问题及对策   总被引:1,自引:1,他引:0  
概述了国内柴油加氢工程化应用的技术,分析了柴油加氢工程化过程中遇到的问题,包括高压换热器铵盐结垢及腐蚀、反应器压力降上升导致的非计划停工、柴油产品浑浊、装置达不到合理的运行周期等。分析了产生这些问题的原因,提出了应对措施。  相似文献   

16.
针对加氢精制装置反应流出物高压换热器铵盐沉积和腐蚀问题,系统分析氯化物的来源及腐蚀原因,通过增加原料中间罐降低原料中水含量、提高系统压力、增加循环氢流量、提高反应流出物/混合进料换热器出口温度、增加反应流出物/低分油换热器前注水量、降低总注水量至设计范围内等一系列措施的实施,有效解决了该加氢装置反应流出物系统的铵盐沉积和腐蚀问题,同时单位能耗从596.87 MJ/t降到了451.44 MJ/t。  相似文献   

17.
高压换热器是炼油加氢装置的核心设备之一。文章通过记录某公司炼化1.60 Mt/a柴油加氢精制装置1台隔膜密封盘式高压换热器的检修过程,简单论述了高压换热器管束腐蚀原因、结构特点、密封原理、拆装和检修等情况,并提出了应对措施,为同类装置高压换热器的使用、维护及检修提供了宝贵经验。  相似文献   

18.
中国石油天然气股份有限公司大连石化分公司2.0 Mt/a柴油加氢装置高压系统压力降2015年6月初为150 k Pa,2016年2月底上升至220 k Pa,尤其是从2016年1月下旬开始呈现出快速上升的趋势。通过对反应产物-混氢油换热器E-101A/B、热高分气-混氢换热器E-102、热高分气空冷器A-101压力降变化分析,并结合氯铵盐、硫氢铵盐结晶条件,断定高压系统压力降上升是E-102内氯铵盐结晶物析出所致。通过对比水的汽化温度和E-102入口温度,确定水在7.0 MPa,190℃工况下的状态能满足洗盐的要求。在E-102前注水后,高压系统压力降大幅下降至140 k Pa以下,基本恢复到装置开工初期水平。  相似文献   

19.
针对加氢装置高压换热器因受原料影响而产生的铵盐垢下腐蚀、流动腐蚀等问题,利用大数据技术,基于企业的工业数据,构建了加氢装置高压换热器腐蚀预测模型,并开发了高压换热器腐蚀预警系统。该系统在某石化公司2~#柴油加氢装置实现了上线运行,并成功实现该高压换热器腐蚀的预警,提高了企业的生产运行能力,为企业平稳生产提供了保障。  相似文献   

20.
大庆炼化公司170万吨/年柴油加氢装置反应进料泵是该装置关键转动设备之一,它的安稳运转直接关系到柴油加氢装置的安全高效运行。本文就柴油加氢装置开工以来发生的反应进料泵预热系统管线出现裂纹造成泄漏的原因进行了细致分析,并提出了解决措施,为同类装置长周期安稳运行提供了有益经验。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号