首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
GL  Hofman  Yeon  Soo  Kim  Ho  Jin  Ryu  D  Wachs  MR  Finlay  杨红艳 《国外核动力》2008,29(5)
辐照时Al基体中弥散的U-Mo燃料颗粒表面形成包覆的反应物。在一些辐照试验中,反应物和舢基体交界面处有气孔产生。受辐照条件的影响,气孔可能会长大并彼此连接形成连通的大气孔,严重时形成连续网络结构使燃料板出现不可接受的枕形肿胀。在美国和其他国家的辐照实验中都观察到了这种现象。冶金学和热动力学分析表明,Al基体中加入Si以及U-Mo燃料中添加Zr或Ti都可以提高U-Mo/Al弥散型燃料反应产物的稳定性。本文介绍了添加Si辐照试验的初步结果,即将适量的Si添加到Al基体中能有效降低U-Mo/Al燃料扩散反应和消除气孔形成。  相似文献   

2.
D.  D.  KEISER  JR.  A.  B.  ROBINSON  D.  E.  JANNEY  陈建刚 《国外核动力》2009,30(3):52-57,60
RERTRU-Mo弥散燃料板正在研制中,准备将其应用于全世界的研究堆中。特别值得关注的问题是基体为含Si铝合金的U-Mo弥散燃料的辐照性能。添加Si是为了提高U-Mo弥散燃料的性能。采用光学金相和扫描电子显微镜,对基体为Al-0.2Si和4043Al合金(~4.8%Si)的U-Mo燃料板在制造条件和辐照条件下的显微组织进行了分析。两种基体的燃料板在制造中都在U-7Mo颗粒周围产生了富Si的反应层;在辐照中观察到这些反应层厚度增大,燃料板的某些区域出现Si贫化。对于4043Al基体的燃料板,只有在非常恶劣的辐照状态下才会在暴露的燃料板区域中观察到这些现象。  相似文献   

3.
M.  K.  Meryer  R.  Ambrosek  R.  Briggs  G.  Chang  C.  R.  Clark  陈建刚 《国外核动力》2007,28(5):44-47
始于20世纪90年代末期的U-Mo合金弥散燃料辐照试验确定了这些燃料令人满意的辐照行为。但美国国内外随后的实验暴露了这种燃料在高温高功率下的缺点。详细的辐照后检验表明,燃料性能问题不是因为U-Mo燃料颗粒性能差,而是由辐照中燃料和Al基体反应形成的反应层的肿胀行为引起的。 极高密度低富集度燃料的继续开发需要一份详尽的计划,包括燃料制造研究、堆外性能鉴定、辐照试验、辐照后检验、燃料性能评估和模型建立。一些潜在的补救措施对锵决公认的燃料性能问题是有效的;补救措施包括燃料和基体化学成分的微小改变。用另外一种材料代替Al基体,或者完全不要基体。所有的这些变动目前都作为六国(阿根廷、加拿大、法国、韩国、俄罗斯和美国)参与的燃料开发合作的一个部分在调查研究当中。本文将回顾目前RERTR-6辐照试验及其支撑实验的试验结果,并且讨论了到2010年底低富集度高密度燃料合格性鉴定的前进途径。  相似文献   

4.
M.  Comen  F.  Mazaudier  X.  Iltis  M.  Rodier  S.  Dubois  R  Lemoine  刘云明 《国外核动力》2008,29(3)
描述了Al基体中添加Si对UMo燃料颗粒与Al基体反应影响的堆外扩散实验的最初结果。IRIS-3辐照试验表明,Al基体中添加Si是有效的。本研究的目的是要清楚地认识反应产物和扩散原理。在本文陈述的内容中引用了大量的文献资料。  相似文献   

5.
M.  R.  Finlay  D.  M.  Wachs  A.  Robinson  G.  L.  Hofman  陈建刚 《国外核动力》2008,29(3)
高性能研究堆的转换需要对单片式燃料的合格性进行鉴定,现在正在努力开展这一工作。RERTR-6实验的目的是在中等功率密度下辐照的第一批单片式燃料小板,使其达到中等燃耗。后续的RERTR-7实验的目的是在极高功率密度下辐照单片式燃料小板以达到高燃耗。RERTR-7实验的对象还包括搅拌摩擦焊(FSW)和瞬间液相连结法(TLPB)制造的单片式小板。本文介绍了RERTR-6和RERTR-7单片式小板的辐照后检验结果。  相似文献   

6.
介绍了U3Si2 Al弥散型燃料的辐照肿胀机理。将弥散型燃料的芯体视为连续基体中的微型燃料元件 ,应用裂变气体的行为机理描述燃料相中的气泡形成过程。研究结果表明 :燃料相的肿胀引起燃料颗粒和金属基体之间的力学相互作用 ,金属基体能抑制燃料颗粒的辐照肿胀。在一定辐照条件下 ,本模型对燃料元件辐照肿胀的预测值与测量值相符  相似文献   

7.
Jong  Man  Park  Ho  Jin  Ryu  Seok  Jin  Oh  Yeon  Soo  Kim  G.  L.  Hofman  陈建刚 《国外核动力》2007,28(4):47-54
通过弥散体和扩散偶堆外退火试验,研究了Zr添加到U-Mo合金对U-Mo-Zr和Al-si反应的影响。Zr含量为1wt.%、2wt.%和4wt.%的U-7wt.%Mo合金锭由真空感应熔炼而成,采用离心雾化法制成粉末。对经γ相热处理过的U-7Mo-Zr合金进行高温退火试验,研究其γ相稳定性。X射线衍射分析结果表明:U-7Mo-Zr合金的γ相分解与U-7Mo合金类似。为研究互扩散行为,使用U-Mo-Zr粉末和Al-(0、0.4、2、5)wt.%Si合金粉末制备了弥散型样品。采用和弥散型样品化学成份相同的材料制备了扩散偶样品并进行了退火试验,以比较弥散型样品和扩散偶样品的互扩散行为。高Zr含量的弥散型样品在600℃时互扩散速度小幅增大,而扩散偶样品表明Zr添加到U-7Mo中降低了反应增长速度。Si能够减缓反应增长速度。U-Mo合金中添加的Zr没有在反应层中富集,而添加到~中的Si在反应层富集。U-Mo-Zr/Al-Si扩散偶中形成的反应产物为富Si的U(Si、Al)2。  相似文献   

8.
E.  E.  Pasqualini  刘超红 《国外核动力》2007,28(6):46-50
本文介绍了单片式和弥散型U-Mo燃料的研究进展,以便实现用其他替代品来进行高浓铀向低浓铀转换(HEU→LEU)的可能性。在RERTR(研究实验堆降低铀浓缩度计划)-7A辐照试验中,以Zr-4合金为包壳的20%铀富集度U-7Mo单片式燃料板的辐照后初步检验结果表明其性能优良。正在进行中的弥散型燃料的加工性能和性能预测试验具有以下特征:①用锗替代硅与基体铝形成合金;②对U-Mo燃料颗粒涂硅、锗、镍涂层,基体铝与这些元素合金化,从而减少界面反应的动力;③在基体中加入多孔氧化铝,用来吸收裂变气体产物。  相似文献   

9.
U3Si2-Al弥散型燃料是一种成功的低浓铀燃料,但在较高温度和较深燃耗运行时,其抗辐照性能急剧下降;UMo-Al弥散型燃料可能使任何高性能研究堆改用低浓铀,可是燃料相与铝基体的广泛反应引起严重的肿胀,期待含硅的铝基体能成功阻止这种反应的发生;单片型UMo合金燃料板具有较好的抗辐照性能,但制造方法尚不成熟。所有这些问题都亟待解决。本文首先简介了研究堆低浓铀燃料的发展简史,分析了U3Si2-Al弥散型燃料的成就与不足,讨论了UMo合金燃料所遇到的问题与需要解决的途径,提出了U3Si2-Al、UMo-Al弥散型燃料和单片型UMo合金燃料板的研究现状。  相似文献   

10.
在550℃完成了U-7wt%Mo-1wt%Zr和Al及A356(7.1wt%Si)Al合金间的堆外扩散实验。通过使用光学显微镜(OM)和扫描电子显微镜(SEM)、X-射线衍射仪(XRD)和电子探针微观分析仪(WDS)等不同的技术,对两种扩散实验的反应层形貌和相进行了分析和测定。在U-7wt%Mo-1wt%Zr/Al反应层中发现了UAl3、UAl4、Al20Mo2U和Al43Mo4U6。U-7wt%Mo-1wt%Zr/A356 Al反应层中发现了Si含量为25at%的U(Al,si)3和Si5U3,其中Si含茸很高的Si5U3相是在巴西Campinas的国家同步加速辐射实验室(LNLS)采用XRD同步加速辐射测定的  相似文献   

11.
美国、法国、阿根廷和俄罗斯正就铀钼(U-Mo)合金燃料的开发、合格性鉴定和商业应用的许可证问题进行国际合作。进行合格性鉴定试验的样品分别是小板、全尺寸板和组件。美国、法国和阿根廷采用的是轧制工艺,铀密度为6~8g·cm^-3;俄罗斯采用的是挤压工艺,挤压工艺对于提高铀密度比较困难。铀密度为5~6g·c^-3。根据合格性鉴定计划,每个合作国家都根据本国的辐照试验给出了综合性的辐照结果。结果表明,铀钼合金燃料在低燃耗时具有很好的辐照性能,但最近发现,在高温高能耗辐照条件下,铀钼合金弥散型燃料出现了严重的肿胀。即所谓的枕头效应,这主要是由于铀燃料与铝基体发生了过度反应引起的。解决办法有两个,一个是在铝基体材料中添加硅,以减少U~Mo与Al基的反应;另一个办法是采用U-Mo片状合金燃料。  相似文献   

12.
介绍了U3Si2-Al弥散型燃料的辐照肿胀机理。将弥散型燃料的芯体视为连续基体中的微型燃料元件,应用裂变气体的行为机理描述燃料相中的气泡形成过程。研究结果表明:燃料相的肿胀引起燃料颗粒和金属基体之间的力学相互作用,金属基体能抑制燃料颗粒的辐照肿胀。在一定辐照条件下,本模型对燃料元件辐照肿胀的预测值与测量值相符。  相似文献   

13.
中国核动力院U-Mo合金燃料研究现状及进展   总被引:1,自引:1,他引:0  
目前,U-Mo合金燃料是研究试验堆新一代燃料的研究重点.文章介绍U-Mo合金燃料在中国核动力研究设计院(NPIC)的研究现状和进展.NPIC于2006年正式开始研制U-Mo合金弥散燃料元件,几年间开展的研究工作主要有:U-Mo合金熔炼,γ相U-Mo合金粉末制备,(U-Mo)-(Al-Si)弥散燃料板制造工艺研究,U-Mo合金与基体材料、包壳材料和阻挡材料诸如Al、Nb、Zr、Mg等的相容性研究,Si添加到Al基体中对U-Mo/Al反应的影响以及U-Mo合金燃料成分分析及无损检测方法研究等.目前,NPIC已制备出基本满足要求的(U-Mo)-Al弥散燃料板,并计划于2010年前掌握满足技术要求的改进型(U-Mo)-Al弥散燃料板的制造技术.  相似文献   

14.
20世纪90年代中期开始的UMo弥散型燃料辐照试验结果表明,UMo燃料的辐照性能良好;但2003年发现,在高功率和高温时出现枕状肿胀。随后的深入研究表明,肿胀不是由于UMo燃料颗粒本身引起的,而是由于辐照使铝与燃料反应所形成的反应层产生的大气泡引起的。要继续成功开发很高铀密度的低浓铀燃料元件需要有详细的研究计划,这包括:燃料制造工艺开发、堆外性能研究、辐照、辐照后检查、燃料性能评价和模型以及程序的开发。可以通过几个途径克服肿胀问题:稍为改变燃料和基体材料的化学成分;用另一种材料取代铝基体,甚至取消铝基体,开发单片式燃料板。目前6个国家(阿根廷、加拿大、法国、韩国、俄罗斯、美国)正在合作进行上述工作。本文总结了RERTR.6辐照试验及相关实验的最新试验结果,讨论了到2010年开发和鉴定出很高铀密度的低浓铀燃料元件的途径。  相似文献   

15.
针对弥散型燃料板采用实验方法分析U-Mo燃料相与Al-Si基体反应层的性质。实验结果表明:反应层主要出现在U-Mo燃料颗粒的内部微裂纹处及燃料颗粒与基体界面处,其形貌和厚度均不规则。U-Mo与Al-Si遵循空位扩散机制,扩散过程主要为Al、Si向U-Mo合金的扩散。在反应层中Al含量基本维持不变,Si含量沿基体-燃料相方向递增,并聚集在U-Mo侧的反应层中。当基体中Si含量达到5%时,可明显抑制扩散反应的进行,从而改进燃料板性能。  相似文献   

16.
在研究堆中的辐照条件下,U3Si2-Al 弥散型燃料的燃料颗粒和基体界面发生相互扩散。由于相互扩散反应,在每个 U3Si2颗粒的周围形成 U3Al7Si2反应层。反应层厚度随辐照时间和裂变密度而增加。反应层的形成造成了 U3Si2燃料和铝基体的消耗。该过程导致燃料芯体几何结构的演化。根据弥散体中燃料的随机分布特点,作者采用蒙特卡罗方法发展了燃料芯体结构演化的模拟方法。每个颗粒的特性都可以用直径和位置来表示。芯体结构参数包括颗粒尺寸分布、制造状态下的燃料体积分数、反应层厚度、反应层体积、U3Si2燃料体积分数、铝体积分数、接触几率和颗粒相互连接分数。特别是对于制造状态下的燃料体积分数为 43%时,颗粒尺寸较好地服从正态分布。模拟了在 6 mm×6 mm×0.5 mm 的芯体体积中 13 000 个抽样颗粒的情况下,各芯体结构参数随反应层厚度从 0~16 μm 变化时的函数变化情况。  相似文献   

17.
本文将弥散核燃料芯体看作一种特殊的颗粒复合材料,利用细观计算力学的方法,假设燃料颗粒在芯体中周期性分布,建立了对芯体等效辐照肿胀进行计算模拟的有限元模型。考虑颗粒的辐照肿胀和基体材料的辐照硬化效应,分别建立了燃料颗粒和基体材料的应力更新算法,编制了用户材料子程序,在Abaqus软件中实现了芯体等效辐照肿胀的有限元模拟。计算分析了颗粒大小和体积含量对芯体等效辐照肿胀的影响,并得到了等效辐照肿胀的拟合公式。研究结果表明,影响芯体等效辐照肿胀的主要因素是颗粒的辐照肿胀和体积含量。  相似文献   

18.
FeCrAl合金具有良好的抗高温氧化和力学性能,能够作为燃料包壳材料。为研究FeCrAl合金的辐照力学性能,开展了不同元素成分含量和2×1019 cm?2、8×1019 cm?2 2种中子注量辐照下的FeCrAl合金力学性能试验,并在室温和380℃下测试了FeCrAl合金的拉伸性能,获得了不同Cr和Al含量FeCrAl合金的抗拉强度和屈服强度,并研究了Al含量、Cr/Al含量配比及中子辐照对FeCrAl合金力学性能的影响。研究表明,FeCrAl合金强度随着Al含量增加大致呈增加趋势;经2×1019 cm?2中子辐照后,FeCrAl合金强度有较大提升;再经8×1019 cm?2中子辐照后,FeCrAl合金强度升高不明显。该研究结果为耐事故燃料(ATF)包壳材料的研发选型提供了重要的数据支撑。   相似文献   

19.
为验证中国工程试验堆(CENTER)燃料组件设计,在燃料组件正式定型前需开展组件辐照考验,CENTER燃料组件在高通量工程试验堆(HFETR)内采用随堆辐照方式进行辐照考验。根据CENTER燃料组件特点,开展了HFETR辐照考验CENTER燃料组件燃耗计算方法研究,确定了CENTER燃料组件辐照考验堆芯物理计算采用镶嵌耦合方法。结果表明,燃料组件平均燃耗计算值与测量值偏差为3.25%,满足辐照考验要求。   相似文献   

20.
(U—Mo)-Al弥散燃料具有铀密度高、辐照稳定性好、乏燃料易后处理等优点,是新一代研究试验堆的低浓铀燃料。制备中位粒度为40-140μm的γ相U—Mo合金粉末是制备(U—Mo)-Al弥散燃料的基础。用氢化-脱氢工艺制备(U—Mo)-Al粉末具有设备和工艺简单、生产率高、成本低、不污染环境、粉末粒度可控等优点,因此,值得大力开发。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号