首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
液相催化交换法是有效的氢同位素分离方法之一,传统电解法进行氘重氧水氢正常化安全风险大,生产成本高,为此利用液相催化交换法对含氘重氧水进行除氘实验。结果表明,反应温度在30~70℃内,随着温度升高,含氘重氧水除氘过程的总体积传质系数(Kya)值先变大后变小,当温度大于60℃后,总体积传质系数Kya值逐渐变小,最优反应温度为60℃;气液比(摩尔比)在0.5~3.0之间,随着气液比增加,含氘重氧水除氘过程的Kya值愈大,含氘重氧水除氘效果越好,但过大的气液比会引起气液夹带甚至导致液泛,降低反应效率。实验结果可为开展高氘浓度氘重氧水液相催化交换法氢正常化工艺研究提供依据。  相似文献   

2.
古梅  刘俊  罗阳明 《核技术》2013,(9):20-23
氢-水催化交换反应是研究氢同位素分离的重要手段,对反应过程中各影响因素的研究是氢同位素分离工作中的重要内容。在自行设计的不锈钢催化交换柱中,装填一定体积比的疏水催化剂与亲水填料,进行H-D体系气液催化交换实验。观察反应温度、气液摩尔比、不同原料水氘浓度对传质系数的影响,讨论了气体流速对床层压力降的影响情况。结果表明,不同气液比下,反应温度为45°C时传质系数最高。传质系数随原料水氘浓度(5.05 20.1)×10 3增加而降低,传质系数在0.58 1.17和2.65 3.56随着气液摩尔比而增加,催化交换柱床层压力降随气体流速而增加。研究发现,反应温度、气液摩尔比和氘浓度等因素均会影响氘的传质系数。  相似文献   

3.
采用Pt-SDB疏水催化剂和亲水填料混装进行含氘、氚氢气与水的液相催化交换实验,研究反应温度、气体流量和液体流量对D、T转化率以及H-D、H-T的总传质系数Kya的影响。研究结果表明:在相同操作条件下,T的转化率η(H-T)比D的转化率η(H-T)高,H-T的总传质系数比H-D的高;从D、T转化率随气体流量和液体流量的变化趋势可知,气体流量对D、T转化率的影响较大;选择合适的反应温度即可获得较佳的转化率和总传质系数。在实际工艺中,反应温度选为45℃较适宜。  相似文献   

4.
在24 mm×1 000 mm玻璃柱中,用氢/氘气-水考察了液体喷淋密度对混装催化交换床的压力降和传质系数的影响。结果表明:床层压力降(Δp)随液体喷淋密度(l)的增大而升高,当操作气速较低时,l对Δp的影响不很明显,随着操作气速的增大,l对Δp的影响程度明显增强;低气速下,l对床层的传质系数(Kya)影响小,气液夹带量(δ)对Kya的影响不大;较高气速下,Kya随l的增加而增大,δ对Kya的影响较大。  相似文献   

5.
采用Pt-SDB疏水催化剂与亲水填料混装,考查了氢同位素氘从气、液两相间相互交换过程的影响因素。结果表明:随着天然水流量的增大,开始时催化交换效率增大,而后趋于平稳;在相同的液体流量下,随着气体流量的增大,催化交换效率减小;随着温度的升高,催化交换效率增大;在同一温度下,随着液体流量的增大,气相总传质系数(Kya)没有什么明显的变化,而反应温度对Kya影响显著,高、低气体流速下两者的活化能相差很小。  相似文献   

6.
Pt-SDB疏水催化剂应用于氢-水同位素交换的实验研究   总被引:5,自引:0,他引:5  
采用气?液逆流方式对苯乙烯-二乙烯基苯共聚物担载金属铂(Pt-SDB)疏水催化剂应用于HD(g)/H2O(l)体系的氢同位素交换进行了实验室规模的中试实验研究;;对该实验系统和Pt-SDB的催化性能作出了评价;;得出了Pt-SDB的总体积传质系数Kya值和各种工艺条件。实验结果表明:当氢气流速为0.2m/s、温度为65℃时;;Pt-SDB与亲水性金属填料按1∶4的体积比混合装柱的Kya平均值达到41.5mol·m?·s?。  相似文献   

7.
Pt-SDB憎水催化剂氢-水液相催化交换工艺研究   总被引:11,自引:5,他引:6  
研究了以贵金属铂为活性成分、聚苯乙烯 二乙烯基苯为载体的憎水催化剂Pt SDB的氢 水液相催化交换工艺条件 ,讨论了催化剂与亲水填料在催化反应床中的填装方式、填装比例以及反应温度、交换方式等工艺条件对氢 水催化交换反应总体积传质系数的影响。结果表明 :催化剂与填料混合填装时体积比 1∶1和分层有序填装时体积比 1∶4的效果最佳 ,总体积传质系数随反应温度升高而提高 ,交换反应温度以 60℃为宜  相似文献   

8.
水-氢同位素液相催化交换工艺研究   总被引:2,自引:1,他引:1  
以Pt-SDB为憎水催化剂研究了水-氢同位素液相催化交换工艺,讨论了反应温度、氢气流量、低浓重水流量等工艺条件对催化交换塔传质单元高度(HTU)的影响和反应温度、气液比对催化交换塔阻力降的影响。结果表明:当反应温度为60℃、气液比为1:1时,水-氢同位素液相催化交换工艺是比较适宜的。  相似文献   

9.
制备高比度氚标记化合物的方法主要有催化加氚法,催化卤-氚交换法和催化氢-氚同位素交换法。催化剂本身并不参加化学反应,只在其表面吸附氚气从气相进入液相或固相,改变反应速度,提高标记物的比度。常用的催化剂有钯、铂、铑等过渡金属元素。李志敏的工作证明钯-碳催化剂在催化加氚反应中不仅有催化作用,而且对氢-氚体系而言,还有明显的分离作用。  相似文献   

10.
聚苯乙烯-二乙烯基苯(SDB)是氢同位素分离技术中气-液交换反应重要的疏水催化剂载体.用密度泛函B3P86方法和基函数6-311G进行全电子计算,获得了SDB疏水官能团分子苯乙烯的基态电子状态、基态能量、离解能和几何参数.计算了苯乙烯上H、D排代反应的焓变、熵变和吉布斯函数变化,以及反应的平衡常数和气体压力比.计算结果表明,SDB上氘排代氢的反应有可能发生,但进行的程度较低,且随着反应温度的提高,这种排代将更难进行.同时,计算表明氢氘排代更易发生在苯环上,而乙烯基上的排代相对困难.  相似文献   

11.
用于氢-水同位素交换的Pt-PTFE类憎水催化剂的研制   总被引:2,自引:2,他引:0  
研制了以铂为活性成分,聚四氟乙烯(PTFE)为憎水材料,活性炭、二氧化硅等作载体的憎水催化剂。在滴流床上,进行了氢-水气液逆流氢同位素交换反应,讨论了载体、铂含量及PTEF量对催化剂活性的影响。结果表明,以活性炭为载体,聚四氟乙烯与Pt-C粉的质量比在1-2时,Pt-C-PTFE催化剂的活性高;交换反应的总体积传质系数随反应温度和氢气流量的增加而增大。  相似文献   

12.
钒的活化及钒氢化物性能研究   总被引:1,自引:0,他引:1  
真空条件下,金属钒长时间高温除气、反复吸放氘气,最终活化并饱和吸氘到氘、钒原子比接近2.0。实验确定的活化条件为:真空度2~3Pa,活化温度400℃,活化时间4h,初始吸附温度80~100℃,初始吸附压力0.6~3.4MPa,2~3次反复吸放纯化氘气。实验测得钒氢化物性能参数为:室温平衡压,0.2MPa;饱和吸附容量,0.47L/g;500℃时保留量,6.1%;200℃时平衡压,60MPa。实验研制的钒氢化物高压气源已成功用于惯性约束聚变高压充氘氚实验。  相似文献   

13.
由于碳同位素分离系数小,分离难度大,需要采用高效规整填料实现~(13)C的分离。本文通过计算流体力学(CFD)数值模拟研究,采用流体体积函数(VOF)方法,研制了用于~(13)C分离的高比表面积丝网波纹规整填料(PACK-~(13)C),建立了PACK-~(13)C填料表面伴随有气相逆流的局部液体降膜流动模型,选用CO(l)-CO(g)为模拟计算物系,考察了板面结构、丝网目数等因素对液膜流动的影响,并对填料表面气液相界面进行追踪,探究了气液相界面波动对传质效率的影响,研究表明,改善填料壁面结构能够增强气液相界面波动,可以实现强化传质过程。填料表面局部降膜流动的研究方法,可应用于填料气液传质过程中涉及的多尺度流动及传质现象的可视化研究,为优化填料结构提供基础性理论指导。  相似文献   

14.
疏水催化剂用于HD/H2O同位素交换的性能研究   总被引:2,自引:1,他引:1  
夏修龙  罗阳明  傅中华  刘俊  王和义 《核技术》2006,29(11):864-866
系统地研究了气体线速度、温度等对疏水催化剂传质系数的影响.气体线速度在2-9 cm·s-1范围内,催化剂传质系数呈线性增长.气体线速度在20-90 cm·s-1范围内,催化剂传质系数在40-60mol·m-3·s-1范围内,通过提高气体线速度来提高传质系数是一有效途径.降低进液位置后发现浓缩段传质系数在高气速下显著下降,从实验上证实了蒸汽在催化交换过程中具有极其重要的作用.操作温度宜在45℃左右.  相似文献   

15.
自制了高温铬还原制氢装置,探索了降低H3+对HD+干扰的方法。以一套氘丰度为天然水平的国家一级标准水样中的两个样品作为标准,另外两个样品作为测试样品,在GAM400四极质谱计上探索了等H2+线性校正测量值的方法,利用双标准外标氘氢丰度比差值校准系数的方法对两个标准水样进行了测量,结果与国家标准值偏差为±0.1%,最终评估测量相对不确定度为0.8%。  相似文献   

16.
铀是一种传统的贮氚材料,在铀粉瓶中贮存的氚会不断衰变产生氦气,导致使用时氚的纯度下降,影响标记化合物产率。本研究设计了氚纯化装置,对装置进行安装调试,并对该装置中的铀床进行活化,利用该装置测定铀吸收氘单质气体的p-t曲线及在400~550 ℃范围的解吸氘气体的p-t曲线。应用调试好的系统对长期存放贮氚铀粉瓶中的氚进行纯化。结果表明,设计的氚纯化装置系统密封性好,经氦质谱检漏测定值为7.8×10-13 Pa•m3/s;利用该装置测定氘的吸附饱和曲线,氘完全解吸时铀对氘的吸附量为240 mL/g。验证实验回收了久置铀粉瓶中的氚为1.44×1013 Bq,利用氦气体积推算出久置铀粉瓶中含氚质量百分率为53.1%。实验结果证实了系统纯化氚的可行性,可为氚标记化合物制备提供可靠的氚源。  相似文献   

17.
利用带显微镜的气固反应系统,在线观察了U-2.5Nb氢蚀初期氢化物成核和生长过程,表征了U-2.5Nb氢蚀初期的动力学特征和反应速度,研究了温度、压力和膜厚对U-2.5Nb氢蚀初期行为特征的影响。结果表明,U-2.5Nb比未合金化铀的氢化速度大很多,抗氢蚀性能更差。在低温(<125℃)下,孕育期随反应温度的升高而变短,遵从Arrhenius关系,超过125℃,孕育期随反应温度的升高而变长,孕育期存在一最小值;孕育期随反应压力升高而变短,与反应氢压力成反比关系;膜厚对孕育期的影响极其明显,孕育期随氧化膜厚度增加而变长。孕育期越长的氢蚀,其表面的成核点越少,成核越不均匀,且易在局部形成大的氢化物,氢化速度亦越低。  相似文献   

18.
核聚变被认为是人类社会未来的理想能源,对社会、经济的可持续发展具有重要的战略意义。氘氚聚变反应具有反应截面大、反应速率高、点火温度低及释放能量大等优点,是目前聚变研究的主要目标,而高效的氘氚燃料循环工艺与技术是实现聚变能源商业应用的基础。本文主要介绍氘氚燃料循环所涉及的等离子体排灰气中氚的快速回收、氚的增殖与提取、大规模氢同位素分离、氚测量等相关氚化学与氚工艺的研究进展及展望,以期对未来聚变能源氚工厂相关技术的研究提供借鉴和参考。  相似文献   

19.
对大纵横比玻璃微球充氘氚气体,采用了分步增压法。为了充气,建立了一套防氢及其同位素腐蚀的高压系统,该系统在15MPa下的漏率为3.7×10~(-4)Pa·L/s。用铀床和LaNi_5床组合起来,作为充气的气源。在不同的温度下,可获得不同压力的氘氚气体,满足了充气要求。还进行了大纵横比玻璃微球的性能研究,在室温和250℃时,该微球均能承受1.0MPa的压力,微球的内外压之比约0.51。大纵横比玻璃微球分步增压充气工艺是:在250℃时,每隔0.5h,增加0.1MPa,压力增加到1.0MPa时,平衡4h,停止加热,冷却到室温,用氘气清洗系统,取出微球进行测量,微球内的氘氚气体压力为0.51~0.54MPa,满足了物理实验的要求。  相似文献   

20.
采用气-液逆流方式研究了Pt/C/PTFE有序床疏水催化剂对H_2(g)/HDO(l)体系中同位素交换的催化性能。结果表明:Pt/C/PTFE有序床催化剂不仅具有较高的催化活性和良好的疏水性,而且能够达到很高的气体流速;实验所用的两种Pt/C/PTFE的体积传质系数(K_(ya))均达1.12m~3(STP)/(s·m~3)(50mol/(m~3·s))以上,且用水浸泡35d后其催化活性无明显变化;在气液摩尔比为1∶1的条件下,气体空塔线速率达到1.0m/s时,两种填装的有序床Pt/C/PTFE均未发生液泛。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号