首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
本工作研究了Purex后处理流程模拟有机料液中U(Ⅵ)的定量分析方法。首先扣除硝酸铀酰有机溶液拉曼光谱的荧光背景,并以30%TBP/煤油位于1 065cm-1处的特征峰为内标峰,将U(Ⅵ)位于860cm-1处对称伸缩振动峰(ν1)强度与内标峰强度的比值,对铀浓度绘制标准曲线,在U(Ⅵ)质量浓度为5.0~107.0g/L范围内,标准曲线为y=0.063 6x+0.357,r2=0.999。经过内标法处理后的标准曲线具有更好的稳定性,75d后相对强度标准曲线为y=0.062 4x+0.489,r2=0.999。F检验与t检验证明,在显著性水平α=0.05时,两条标准曲线在分析精度与斜率上无显著性差异。使用内标法后,可透过容器壁直接分析铀浓度,容器对检测结果的影响较小,5种容器对U(Ⅵ)检测影响相对误差均不高于3.7%,故检测过程无需进行样品的转移及分装,简化了实验步骤。经内标法修正后,改变拉曼光谱仪的积分时间和激光功率基本不影响U(Ⅵ)的定量检测,从而可选择合适的参数以适应不同浓度U(Ⅵ)溶液分析的需要。  相似文献   

2.
开展了硝酸体系中以肼为还原剂、铂黑为催化剂催化还原U(Ⅵ)的动力学研究。通过考察U(Ⅵ)浓度、肼浓度、酸度以及催化剂用量等条件对反应过程的影响,确定了反应的初始动力学速率方程为-dc(UO2+2)dt=kc0.44(UO2+2)c0.19(N2H+5)c-0.23(H+),在60 ℃、固液比rS/L=2.0 g/L时,速率常数k=2.6×10-3 (mol/L)0.6/min。研究了温度对反应速率的影响,结果表明,在20~75 ℃范围内,随着温度升高,反应速率加快,反应过程由动力学控制转变为扩散控制过程。对比了硝酸体系与高氯酸体系的反应动力学实验数据,发现相同条件下硝酸体系的反应速率明显低于高氯酸体系,并分析了其中的原因。  相似文献   

3.
开展了硝酸体系中以肼为还原剂、铂黑为催化剂催化还原U(Ⅵ)的动力学研究。通过考察U(Ⅵ)浓度、肼浓度、酸度以及催化剂用量等条件对反应过程的影响,确定了反应的初始动力学速率方程为-dc(UO2+2)dt=kc0.44(UO2+2)c0.19(N2H+5)c-0.23(H+),在60 ℃、固液比rS/L=2.0 g/L时,速率常数k=2.6×10-3 (mol/L)0.6/min。研究了温度对反应速率的影响,结果表明,在20~75 ℃范围内,随着温度升高,反应速率加快,反应过程由动力学控制转变为扩散控制过程。对比了硝酸体系与高氯酸体系的反应动力学实验数据,发现相同条件下硝酸体系的反应速率明显低于高氯酸体系,并分析了其中的原因。  相似文献   

4.
30%TBP/煤油中DBP和MBP的离子色谱分析   总被引:1,自引:1,他引:0  
采用离子色谱作为检测仪器,建立了简单、快速、灵敏地测定30%TBP/煤油中DBP和MBP的新方法。以去离子水为反萃剂将有机相中DBP和MBP反萃到水相,去除有机相干扰,离子色谱仪进行检测。当DBP浓度在0.01~6.0 mmol/L、MBP浓度在0.02~2.5 mmol/L时,标准曲线均具有良好的线性,相关系数r2均达到0.999,DBP的检出限为5.0 μmol/L,MBP的检出限为4.0 μmol/L。采用建立的方法对模拟30%TBP/煤油生成的辐解产物进行重加回收实验,DBP的重加回收率在92%~96%,模拟样品6次平行测定的sr=2.1%。  相似文献   

5.
采用离子色谱作为检测仪器,建立了简单、快速、灵敏地测定30%TBP/煤油中DBP和MBP的新方法。以去离子水为反萃剂将有机相中DBP和MBP反萃到水相,去除有机相干扰,离子色谱仪进行检测。当DBP浓度在0.01~6.0 mmol/L、MBP浓度在0.02~2.5 mmol/L时,标准曲线均具有良好的线性,相关系数r2均达到0.999,DBP的检出限为5.0 μmol/L,MBP的检出限为4.0 μmol/L。采用建立的方法对模拟30%TBP/煤油生成的辐解产物进行重加回收实验,DBP的重加回收率在92%~96%,模拟样品6次平行测定的sr=2.1%。  相似文献   

6.
为开发Pu(Ⅳ)的高选择性萃取剂,实现废液中微量钚的回收,以正十二烷作为稀释剂,研究2,2′-((4-乙氧基-1,2-亚苯基)双(氧基))双(N,N-双(2-乙基己基)乙酰胺)(4-EthoxyBenzoDODA)对U(Ⅵ)、Pu(Ⅳ)的萃取行为,以及两相混合振荡时间、水相硝酸浓度和有机相萃取剂浓度对U(Ⅵ)、Pu(Ⅳ)萃取分配比的影响。硝酸的萃取实验结果表明,4-EthoxyBenzoDODA(KH=0.14)比BenzoDODA(KH=0.44)碱性弱,更有利于选择萃取离子势较强的Pu(Ⅳ)。对U(Ⅵ)、Pu(Ⅳ)的萃取实验表明,Pu(Ⅳ)对U(Ⅵ)的分离因子最高可达6.9,Pu(Ⅳ)对Eu(Ⅲ)的分离因子最高可达223。采用斜率法分析了4.0 mol/L HNO3浓度下U(Ⅵ)萃合物的组成,主要为UO2(NO3)2·L)、Pu(Ⅳ)(Pu(NO3)4·L和Pu(NO3)4·L2共存。使用硝酸肼或者硝酸羟胺等还原反萃剂,可以将负载有机相中98%的Pu反萃至水相中。结果表明,4-EthoxyBenzoDODA对Pu(Ⅳ)具有一定的选择性。  相似文献   

7.
利用聚乙烯醇和海藻酸钠制备了硫酸盐还原菌微球,探讨了Zn2+、Cu2+、乙酸钠、草酸钠和柠檬酸钠对其还原U(Ⅵ)的影响,考察了其选择性去除U(Ⅵ)的工艺。实验结果表明,当Zn2+或Cu2+浓度低于100 mg/L时,U(Ⅵ)还原未受显著影响,但当其增至150 mg/L时,U(Ⅵ)还原被完全抑制。当单齿配体有机物(乙酸钠)存在时,U(Ⅵ)可被彻底还原;而多齿配体有机物(草酸钠和柠檬酸钠)存在时,会延缓甚至完全抑制U(Ⅵ)的还原。对于无机U(Ⅵ)重金属体系,可利用U(Ⅵ)和硫酸盐还原自由能的差异,适当降低COD/SO2-4比值直接选择性去除U(Ⅵ);对于有机U(Ⅵ)重金属体系,可通过多齿配体有机物络合U(Ⅵ),同时利用硫化物选择性沉淀重金属,间接实现U(Ⅵ)的选择性去除。  相似文献   

8.
近年来,核燃料后处理的计算机模拟研究成为世界各国研究核燃料后处理工艺过程的重要手段。本工作以磷酸三丁酯为萃取剂、煤油为稀释剂的混合有机萃取剂,在HNO3介质中络合萃取Np(Ⅳ、Ⅵ)的体系中,利用BP人工神经网络将萃取平衡分配比和萃取操作条件如初始硝酸浓度、初始Np(Ⅳ、Ⅵ)浓度、初始U(Ⅵ)浓度及温度进行了关联。建立了该体系下磷酸三丁酯络合萃取Np(Ⅳ、Ⅵ)的人工神经网络模型,并用该模型计算且检验了不同萃取条件对平衡分配比的影响。结果表明:在25~60℃、水相c0(HNO3)为0.1~11mol/L、水相初始铀质量浓度为0~210g/L时,该人工神经网络模型可以对Np(Ⅳ、Ⅵ)萃取分配比进行预测,具有较高的计算精度。经过文献Np(Ⅳ、Ⅵ)萃取平衡分配比实验值检验,其检验平均相对误差在2%以内。  相似文献   

9.
以N,N,N′,N′-四辛基-3-氧戊二酰胺(TODGA)为代表的酰胺荚醚类萃取剂可以有效萃取高放废液中的An(Ⅲ)和Ln(Ⅲ),为防止Zr4+、Pd2+等裂片元素萃入有机相,通常需要加入H2C2O4作为水相络合剂,目前,H2C2O4对TODGA萃取Ln(Ⅲ)的影响尚未报道。本工作研究了HNO3、H2C2O4浓度对TODGA或TODGA+TBP体系萃取Nd3+的影响,同时测定了有机相中的H2C2O4浓度,并用紫外-可见吸收光谱分析了有机相中的H2C2O4与有机相中Nd3+的配位情况。研究结果表明:HNO3浓度在1.0~3.0 mol/L的范围内,Nd3+的分配比D(Nd3+)随HNO3浓度的增加而增加;H2C2O4浓度在0.1~0.5 mol/L的范围内,D(Nd3+)随H2C2O4浓度的增加而增加。HNO3浓度在1.0~3.0 mol/L的范围内,萃入有机相中H2C2O4浓度随HNO3浓度的增加而减小,且存在于有机相中的H2C2O4并未与有机相Nd3+配位。  相似文献   

10.
以三聚氰胺为原料、碳酸钙为辅助模板,采用热聚合法对石墨相氮化碳(g-C3N4)进行改性,制备了多孔石墨相氮化碳(PCN)材料,研究了g-C3N4改性前后对U(Ⅵ)的吸附效果,并利用SEM、BET、FT-IR、XPS等表征手段对PCN吸附U(Ⅵ)的机理进行了分析。结果表明:PCN比表面积显著增大(58.5 m2/g),约为g-C3N4的4倍;在初始pH=5、吸附时间2 h、U(Ⅵ)初始浓度10 mg/L、PCN用量0.2 g/L、温度303 K条件下,PCN对U(Ⅵ)的最大吸附量为92 mg/g;整个吸附过程符合准二级动力学方程以及Langmuir等温吸附模型;此外,升高温度有利于PCN对U(Ⅵ)的吸附。FT-IR、XPS表征结果表明,PCN中的含氮基团参与了PCN对U(Ⅵ)的吸附去除。  相似文献   

11.
土壤腐殖酸的提取及其对U(Ⅵ)的吸附   总被引:4,自引:1,他引:4  
用稀碱法从拟作为核废物填埋场的土壤中提取腐殖酸并用元素分析和红外光谱进行表征。用此腐殖酸对U(Ⅵ)进行的吸附实验结果表明:当U(Ⅵ)初始总浓度为0.84×10-4mol/L、溶液pH为3时,5mg腐殖酸可从20mL溶液中吸附U(Ⅵ)80%以上;两相接触8h后达到动态平衡;水相U(Ⅵ)浓度与吸附量之间的关系符合Langmuir经验公式;在0~40℃范围内,温度对吸附有不大的正影响;Al3+、Ca2+、Nd3+、Eu3+、CO2-3、柠檬酸根离子、SO2-4和EDTA等能使该腐殖酸对U(Ⅵ)的吸附率显著降低,而K+、NO-3等对吸附则无明显影响。  相似文献   

12.
采用分光光度法研究了HNO3溶液中U(Ⅳ)还原Np(Ⅴ)的反应,获得了动力学方程-dc (Np(Ⅴ))/dt=kc(Np(Ⅴ))c0.7 (U(Ⅳ))c1.9 (H+)c (NO-3),25℃时反应速率常数k=(6.37±0.49)×10-3 L3.6/(mol 3.6•min),反应活化能Ea=60.13 kJ/mol。结果表明,浓度为0~4.2×10-2mol/L的U(Ⅵ) 对U(Ⅳ)还原Np(Ⅴ)的反应几乎没有影响,并探讨了可能的反应机理。  相似文献   

13.
在MATLAB软件平台上,利用文献报道的610组U(Ⅳ)分配比数据分别对美国、印度及日本提出的3种不同的U(Ⅳ)分配比模型函数进行了验证,验证结果表明:3种模型计算值与实验值的相对偏差均至少在20%以上,其中以美国研究者提出的U(Ⅳ)分配比模型计算效果最佳,但仍无法直接用于模拟计算U(Ⅳ)的分配比。因此,为得到相对偏差较低的U(Ⅳ)分配比模型,以美国研究者提出的模型为基础进行修正,修正后的模型为D(U(Ⅳ))=K*(U(Ⅳ))c2(fTBP),其中K*(U(Ⅳ))=(1.4/(30×c(U(Ⅳ))+1))×K*(U(Ⅵ))×(0.054 1+0.000 658×c2(NO-3)),该模型使用范围为:平衡水相硝酸浓度为0.4~4.0mol/L,U(Ⅳ)质量浓度为5~50g/L,U(Ⅵ)质量浓度为15~150g/L,Pu(Ⅲ)质量浓度为0.4~36.3g/L,肼浓度为7×10-4~2mol/L,相对偏差在±15%以内。  相似文献   

14.
在振动搅拌槽中,研究了UO_2(NO_3)_2-HNO_3-N_2H_5NO_3(H_2O)/30%TBP(煤油)体系的水相电解液组分浓度对U(Ⅵ)电解还原速率的影响。根据实验数据,经回归分析得反应动力学微分方程: -(d[U(Ⅵ)]/dt)=k[U(Ⅵ)]~(0.77)[N_2H_5~+]~(0.061)[HNO_3]~0.017式中速度常数k是温度的函数。25℃时,k=0.0019。在实验浓度范围内,U(Ⅵ)还原速率随U(Ⅵ)浓度升高而增大,表现反应级数为0.75级,而[N_2H_5~+]及[HNO_3]影响很小,反应级数近于0。初步探讨了硝酸的电解还原以及硝酸肼对其还原过程的抑制作用,给出了不同硝酸浓度下的极化曲线。对于硝酸电解还原过程中主要产物亚硝酸的生成量与硝酸浓度、电解时间及肼浓度等的关系进行了讨论。  相似文献   

15.
为优化硝酸介质下Pt催化N2H4还原U(Ⅵ)制备U(Ⅳ)的工艺条件,确定此反应过程的控制步骤,有针对性地提高控制步骤的反应速率,以确定N2H4还原U(Ⅵ)制备U(Ⅳ)过程中的反应历程以及反应机理,通过实验研究确定了N2H4在Pt催化剂上的断键方式和分解机理。采用气相色谱法、分光光度法、滴定法及排水法对硝酸介质下Pt催化N2H4还原U(Ⅵ)制备U(Ⅳ)过程中的产物进行分析,确定反应过程中N2H4的断键机制。结果表明,硝酸介质下Pt催化N2H4还原U(Ⅵ)制备U(Ⅳ)反应过程中没有叠氮酸、氮氧化物及氢气生成,产物主要是N2,生成的N2的量与消耗的N2H4的量接近1∶1;当存在U(Ⅵ)时,生成的NH+4产量较低,当U(Ⅵ)反应完全后,NH+4的产生速率急剧增大;N2H4以N-N断键和N-H断键两种方式共存;反应温度升高有利于加快由U(Ⅵ)制备U(Ⅳ)还原反应的进行。  相似文献   

16.
采用溶胶-凝胶法合成二氧化钛(TiO2),并将苯胺聚合在TiO2表面制备了聚苯胺(PANI)/TiO2复合材料(PANI/TiO2)。使用FT-IR、TGA和XPS表征了制备的TiO2、PANI和PANI/TiO2的表面功能基团、热稳定性和表面元素组成。研究了溶液pH值、吸附时间、U(Ⅵ)浓度和温度等因素对TiO2、PANI和PANI/TiO2吸附U(Ⅵ)的影响,探讨了3种材料对U(Ⅵ)的吸附动力学、等温线和热力学性质。FT-IR、TGA和XPS表征结果表明,成功制备了PANI/TiO2复合材料。TiO2、PANI和PANI/TiO2吸附U(Ⅵ)的最佳pH值分别为5.0、4.5和5.0;吸附过程均符合Langmuir吸附等温模型和准二级吸附方程,TiO2、PANI和PANI/TiO2的单层饱和吸附量分别为11.49、22.41、43.29 mg/g;3种吸附剂对U(Ⅵ)的吸附过程均为自发的吸热过程。同时,PANI/TiO2具有较好的循环使用性能,第5次使用时,吸附量仅降低了15.4%。  相似文献   

17.
利用文献报道的Th(NO3)4-UO2(NO3)2-HNO3-H2O/30%TBP-正十二烷体系各组分的分配比实验数据对现有的分配比模型进行分析和比对,提出了一个计算该体系各组分分配比的新模型。利用34组实验数据对新模型进行了验证,符合情况良好。计算结果表明,本文提出的模型明显优于原模型,可作为Th(NO3)4-UO2(NO3)2-HNO3-H2O/30%TBP-正十二烷萃取体系中Th(Ⅳ)、U(Ⅵ)和HNO3萃取行为计算机模拟的基础。模型建立的条件为:温度,25℃;U(Ⅵ)浓度,0~100g/L;Th(Ⅳ)浓度,0~232g/L;硝酸浓度,0~4.5mol/L。  相似文献   

18.
以伊利石和高岭石为吸附剂,通过静态吸附法研究了其对U(Ⅵ)的吸附特性。考察了接触时间、初始浓度、吸附剂质量、pH、温度、离子种类、腐殖酸等对其吸附效果的影响;采用红外光谱(FTIR) 对伊利石和高岭石的结构进行了表征。研究结果表明:伊利石和高岭石对U(Ⅵ)具有很强的吸附能力,在10 h、铀初始质量浓度为30 mg/L、吸附剂质量为0.04 g、pH=5的条件下,伊利石对U(Ⅵ)的吸附效果最好;在12 h、铀初始质量浓度为30 mg/L、吸附剂质量为0.01 g、pH=5的条件下,高岭石对U(Ⅵ)的吸附效果最好;随着温度的升高,伊利石和高岭石对U(Ⅵ)的吸附能力不断增强,尤其是伊利石;溶液中Mg2+、CO2-3、HCO-3显著降低了伊利石和高岭石对U(Ⅵ)的吸附效果;随着腐殖酸浓度的增加,伊利石对U(Ⅵ)的吸附能力提高,高岭石对U(Ⅵ)的吸附能力降低。  相似文献   

19.
研究了类普鲁士蓝吸附剂K2NiFe(CN)6(KNiFC)在室温离子液体(RTILs)中对Cs+的吸附,包括吸附动力学、吸附等温线、吸附机理,并且研究了配体N,N,N′,N′-四甲基丙二酰胺(TMMA)、N,N-二甲基甲酰胺(DMF)、亚甲基二磷酸四异丙酯(TIPMBP)以及共存离子U(Ⅵ)和Th(Ⅳ)对Cs+吸附的影响。结果显示:温度为298 K时,Cs+的饱和吸附量为40.3 mg/g;温度为338 K时,其饱和吸附量为49.2 mg/g;吸附平衡时间约为18 h。吸附可以很好地用准二级动力学描述,吸附反应为吸热反应。通过对吸附剂进行X射线光电子能谱法(XPS)表征,证明其吸附机理为阳离子交换机理。当Cs+、U(Ⅵ)或Th(Ⅳ)共同存在时,会发生吸附竞争。而当在Cs+、Th(Ⅳ)或U(Ⅵ)混合溶液中分别加入TMMA、DMF、TIPMBP后,Th(Ⅳ)几乎不被吸附,Cs+的吸附量不变;U(Ⅵ)吸附量很小,Cs+的吸附量变化不大。当离子液体中Cs+、Th(Ⅳ)或U(Ⅵ)共存时,可以通过加入配体来实现类普鲁士蓝KNiFC无机吸附剂对Cs+的选择性吸附。  相似文献   

20.
硝酸铝存在下,测定了UO2(NO2)2(初始质量浓度为2.5g/L)和HNO3(初始浓度为0~2mol/L)在稀TBP/煤油(ψ≤10%)和水相溶液之间的分配比,并采用非线性最小二乘法拟合了UO2(NO3)和HNO3的表观萃取平衡常数表达式。利用拟合得到的平衡常数计算得到的D(U(Ⅵ))和D(H^ )与实验值符合较好,D(U(Ⅵ))平均偏差约为10%,D(H^ )的平均偏差小于5%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号