首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
DNA是生物体中一类最基本的大分子,是遗传信息的载体,也是电离辐射引致细胞杀伤或转化的主要靶分子。电离辐射可引起多种类型的损伤,如碱基变化、糖基损伤、单链和双链断裂(DSB)以及DNA和蛋白质的交联等。其中DSB是辐射所致生物效应中最重要的原初损伤,非重接性的DSB则被认为是细胞杀伤效应的最重要的损伤。  相似文献   

2.
脱氧核糖核酸(DNA)是生物体中一类重要的大分子。它是遗传信息的载体,也是辐射生物学效应的最重要的靶分子。电离辐射可引起DNA多种类型的损伤,其中双链断裂(DSB)是辐射所致生物效应中最重要的原初损伤。此实验旨在用原子力显微镜(AFM)研究重离子辐射诱发的DNA双链断裂。  相似文献   

3.
随着科学技术的发展,辐射生物效应的研究越来越引起人们的重视。脱氧核糖核酸(deoxvribonucleic acid,DNA)是生物体的遗传物质,也是辐射生物学效应研究的最重要的靶分子,DNA的辐射损伤问题一直是分子放射生物学的中心课题。对DNA原初损伤谱的模拟和计算,是对辐射作用机理解释和预测的第1步,DNA损伤谱的理论模拟已成为本领域的一个强有力的工具。辐照损伤的复杂程度对于细胞的修复、细胞凋亡以及放射治疗等等有很大的影响,因而DNA损伤的研究对于癌症的治疗、辐射环境的健康评估以及辐射防护等等是非常重要和必要的。  相似文献   

4.
生物大分子DNA是生命信息的载体,是辐射生物学效应最重要的靶分子。为了进一步研究辐射致DNA损伤的机理,首先需要掌握观测DNA分子及其双链断裂(Double Strand Breaks,DSB)碎片的技术。在大气状态下,使用先进的原子力显微镜(AFM)技术获得了3种经过提纯的DNA分子的直观图像;在水溶液中,利用~(241)Am-α源辐照装置对其中一种DNA分子进行了低剂量照射,利用AFM  相似文献   

5.
DNA是生物体中一类最基本的大分子,是遗传信息的载体,也是电离辐射引致细胞杀伤或转化的主要靶分子。电离辐射可引起多种类型的损伤,如碱基变化、糖基损伤、单链和双链断裂(DSB)以及DNA和蛋白质的交联等。其中DSB是辐射所致生物效应中最重要的原初损伤,非重接性的DSB则被认为是  相似文献   

6.
电离辐射的直接和间接作用(自由基)可引起DNA分子的碱基损伤、链断裂(包括单链和双链断裂)和交联等多种损伤。其中,双链断裂(DSB)是辐射引起的各种生物效应中最重要的原初损伤。在液态环境下,辐射诱导产生的自由基可能是单链和双链断裂发生的主要原因。因此,建立适当的体外模式系统来研究自由基诱导单链和双链断裂的反应动力学是十分必要的。本实验利用原子力显微镜(AFM)开展了重离子辐射中直接和间接作用致DNA链断裂的反应动力学研究。  相似文献   

7.
电离辐射致DNA双链断裂研究方法及统计模型   总被引:1,自引:1,他引:0  
DNA既是生命物质中信息的载体,也是辐射生物效应最主要的靶分子.电离辐射通过射线的直接作用和间接作用引起DNA分子的多类型损伤,其中DNA双链断裂(Double-strand breaks,DSB)是辐射引起的各种生物效应中最重要的原初损伤之一,成为辐射生物学研究的重点.目前DSB研究的主要方法包括拉曼光谱技术、原子力显微镜、单细胞凝胶电泳、脉冲场凝胶电泳、γH2AX分析技术、早熟染色体凝集等,研究DSB的统计模型包括随机断裂模型、Moment法、Tsallis熵模型、平均分子量法,在此均得到总结,最后探讨了DSB辐照热点的研究前景.  相似文献   

8.
在辐射致生物体损伤过程中,射线种类、剂量以及生物体的辐射敏感性等多种因素对生物体的损伤均有重要影响。剂量率是电离辐射的一个重要参数,对于放疗来说,更是不容忽视。  相似文献   

9.
随着科学技术的发展,辐射生物效应的研究越来越引起人们的重视。脱氧核糖核酸(deoxyribonucleic acid,DNA)是生物体的遗传物质,也是辐射生物学效应研究的最重要的靶分子,DNA的辐射损伤问题一直是分子放射生物学的中心课题。对DNA原初损伤谱的模拟和计算,是对辐射作用机理解释和  相似文献   

10.
脱氧核糖核酸(DNA)是辐射生物学效应最重要的靶分子,研究其电离辐射损伤具有重要意义。DNA双链断裂被认为是最重要的原初损伤。此实验用原子力显微镜研究重离子致DNA双链断裂。 首先设计了~(241)Am放射源辐照装置,用它产生的能量为5.48 MeV的α粒子(在水中的LET约为90 keV/μm),对大肠杆菌的超螺旋状ρ GEM-T质粒DNA进行了辐照。辐照剂量为1、4、8和12 Gy。  相似文献   

11.
DNA是生命信息的载体,是辐射生物学效应最重要的靶分子。研究DNA辐射损伤机理,需掌握观测DNA分子及其双链断裂(Double Strand Breaks,DSB)碎片的技术。在大气状态下,使用原子力显微镜(AFM)技术获得了3种经提纯的DNA分子的直观图像。在水溶液中,利用^241Am-α源辐照装置对其中一种DNA分子作低剂量照射,首次获得了DNA双链断裂碎片的AFM图像。为研究不同类型辐射-特别是重离子辐射-导致的DNA双链断裂几率的统计模型,做了技术准备。  相似文献   

12.
质子作为一种高传能线密度(LET)的辐射,具有能量沉积与局部剂量远大于低LET辐射(如X射线、γ射线和电子束等)的特点,通过物质时有完全不同的径迹结构,能够更有效的诱发DNA发生双链断裂,产生更多的不能修复性损伤,引起细胞的转化和死亡以及癌的发生等较高的相对生物效应(RBE)。在DNA分子水平上研究质子致生物损伤的机理,深入了解其辐射特点及危害程度,并研究相应的防护途径十分重要,  相似文献   

13.
电离辐射的直接和间接作用(自由基)可引起DNA分子的碱基损伤、链断裂(包括单链和双链断裂)和交联等多种损伤。其中,双链断裂(DSB)是辐射引起的各种生物效应中最重要的原初损伤。在液态环境下,辐射诱导产生的自由基可能是单链和双链断裂发生的主要原因。因此,建立适当的体外模式  相似文献   

14.
重离子辐照DNA分子的研究都集中在SSB和DSB方面,研究辐照产生的除SSB和DSB以外的产物对研究相关的机理很重要,特别是检测组成DNA的基本单元,如碱基,核苷等的生成量和生成规律。本实验用琼脂糖凝胶电泳验证了小牛胸腺DNA辐照产物分片断主要集中在831bp附近,用MALDI-TOF检测证明在1000-30000质荷比范围内没有可检测到的生成物,HPLC分析表明有生物小分子生成,在小分子到链断裂碎片间没有或很少其它产物,说明MeV离子轰击DNA分子造成的损伤并非随机的。  相似文献   

15.
利用径迹结构的方法模拟了单能电子从入射DNA水溶液到最终产生DNA损伤的早期物理和化学变化过程。着重研究了直接能量沉积导致碱基损伤的判断方法、DNA损伤穷举分类的定义及计算机实现方法,以及确定自由基产生位置的随机抽样方法。结果表明:物理、化学径迹与DNA的反应主要以NB(nobreak)的形式存在,而在链断裂中,主要也以易修复的单链断裂(SSB)为主;在为数不多的双链断裂(DSB)中,复杂DSB占到相当数量的份额。验证了DNA是辐射作用主要“靶”的假定。  相似文献   

16.
在水溶液中,DNA以微观的形态存在,由于布朗运动以及DNA之间的相互作用的存在,使得DNA的浓度可能影响着DNA的微观分布,从而影响DNA损伤,这在我们以前的实验中已有了初步的观测与发现。关于DNA浓度对DNA损伤的影响的报道很少,实验结果不统一,也不系统,且以前的报道均为低LET射线辐射后的结果。关于高LET的重离子的研究目前尚未见诸报道。  相似文献   

17.
常规辐射流行病学在评价低剂量辐射生物效应方面存在一定的局限性,利用分子生物学方法研究辐射人群远后健康效应是目前辐射流行病学研究的主要趋势。本文对DNA甲基化、生物学意义、应用及其与电离辐射的关系进行综述,介绍了其在钚辐射损伤中的机制。从DNA甲基化方面对辐射致癌流行病学进展进行研究,为我国钚接触人群的流行病学研究提供思路和借鉴。  相似文献   

18.
生物辐照损伤是涉及多学科交叉的一个重要领域,它是辐射生物学与辐射医学的基础。对它进行物理化学机理及其生物学效应的研究具有重大理论与实践意义。 重离子在生物介质中输运的过程中产生大量低能次级电子(能量低于100eV)。最近的  相似文献   

19.
本文应用碱洗脱法观察了中草药马蔺子甲素对S-180V细胞DNA损伤与修复的影响,观察到马蔺子甲素能作用于辐射敏感的靶分子DNA,抑制DNA的正常合成和链断裂后的重接修复,从而表现出放射增敏作用。在本实验条件下,马蔺子甲素在有氧和乏氧时的作用无差别。  相似文献   

20.
在超高真空的条件下,采用1~20 eV低能电子照射五分子层厚度质粒DNA,通过琼脂糖凝胶电泳分析交联、单链破坏、双链破坏(DSB)和超螺旋损失的构型变化,并利用碱基切除修复核酸内切酶(Nth和Fpg)表征碱基损伤和多重损伤。DNA各种损伤的单电子量子产率与低能电子的能量关系表明:交联、单链断裂、与碱基损伤有关的交联、孤立碱基损伤的单电子损伤产率的最大值在5 eV和10 eV,双链断裂、非DSB多重损伤的相应峰值为6 eV和10 eV;低于4 eV电子无法产生20个碱基对内DNA的多重损伤。研究证明核激发共振过程是电子有效导致DNA损伤的本质原因,揭示单个电子被碱基捕获形成瞬态阴离子及电子转移过程是电离辐射导致DNA多重损伤的根本机制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号