首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
在核能的开发利用过程中会不可避免地向环境系统释放放射性核素,对核能发展及环境安全造成压力。放射性污染介质的净化修复是核环境安全和核能可持续发展所关注的重要方面,也是人与自然和谐共生的重要前提。近年来,有机多孔材料由于稳定性好、比表面积大、易于进行结构调控和功能化等优点,作为一类新型吸附材料在环境放射性污染治理领域展现出巨大的潜能。本文介绍近年来有机多孔材料在放射性核素分离领域的研究进展,并从计算机辅助设计和实际应用两方面,讨论有机多孔材料在放射性核素吸附分离方面的机遇与挑战,以期为我国开发高效的放射性污染控制方法和工艺提供参考。  相似文献   

2.
在放射性污染环境治理、长寿命核素核数据测量、高放废物地质处置安全评价、地球成因研究等方面均涉及到长寿命痕量核素的分离、纯化与测试。长寿命痕量核素的分离测试已成为放射化学研究的重要分支,日益引起业界的高度关注。本文系统分析介绍了长寿命痕量核素测试过程中的前处理方法、分离纯化方法以及分析测试方法等研究进展,并就相关基础问题进行了探讨,提出今后研究重点和建议。  相似文献   

3.
随着人们环保意识的增强,^79Se、^93Zr和^107Pd 3个长寿命放射性核素越来越受到人们的关注。在放化分离及核数据实验测量工作的操作过程中,这些核素都是微量的,研究微量情况下这些核素在玻璃、聚乙烯和石英3种实验中常用到的材料上的吸附行为,对于它们的化学分离及测量工作有参考价值。  相似文献   

4.
迄今为止,在已知的二千多个放射性核素中,几乎有二分之一是半衰期不到十分钟的短寿命核素。它们在核科学中具有很重要的研究价值。随着现代科学的发展,人们对于短寿命核素的研究日益感到兴趣。在重离子反应、高能散裂反应、超重元素的合成和研究、短寿命放射性核素生产等领域中,重点研究对象都是半衰期较短的核素。人们经常需要对特定核素进行化学性质的鉴定和基本核参数的测定。对于这类研究对象,普通放射化学分离法已无能为力,而快速分离技术正是为了满足短寿命核素研究的特殊需要而发展起来的新技术。由于它具有分离速度快、选择性高的优点,能从辐照靶子的混合核素中有效地分离出各种短寿命核素,因而获得了广泛的应用。  相似文献   

5.
SISAK(Short-lived Isotopes Studies by the AKUFVE technique)技术是目前使用最广泛的快速化学分离方法之一,主要应用在短寿命核素的分离和鉴别、超重元素的人工合成以及化学性质研究等方面的工作中.本文简单地叙述了SISAK技术的流程、原理和发展现状,介绍了自行建立的国内第一套基于SISAK技术的快速化学分离装置,并通过从裂变产物中分离短寿命核素这一实例验证了SISAK技术在快速化学分离中的优越性.  相似文献   

6.
作为乏燃料的主要组成成分,锕系元素及其裂变产物是乏燃料后处理与高放废物处理处置过程的重要对象。在这一过程中,如何实现锕系元素及其裂变产物的高效识别、选择性分离和稳定固化是核能长期安全、高效、可持续发展需要解决的关键问题。无论是放射性核素的识别、分离或固化等过程,从本质上来讲都是基于主体材料或分离配体与目标核素之间的相互作用或化学反应变化来实现。因此,深入了解放射性核素与主体材料或分离配体间的基本化学键合力及其作用机制,对于设计新型核素分离与固定体系,实现放射性核素的高效分离与固定具有重要意义。  相似文献   

7.
《辐射防护通讯》2007,27(1):F0003-F0003
用于废液处理、核素浓集和核素分离等,批式或装柱均可。与有机离子交换剂相比,无机离子交换剂具有如下主要优点。  相似文献   

8.
长寿命裂变产物核素的热中子反应截面是重要的核参数,对于它的深入研究和测量不仅对核结构的研究有理论上的意义,在废物的分离嬗变、中子活化分析等方面也有实际应用价值。  相似文献   

9.
中低放废物近地表处置安全评价中关键核素的筛选计算   总被引:1,自引:0,他引:1  
1前言中低放废物近地表处置要涉及几十种核素,其中短寿命核素较多,长寿命核素较少。过去,国内外针对90Sr、137Cs、60Co等短寿命核素在放射性废物的固化体、处置库的回填材料和混凝土容器中的行为做了许多研究工作,似乎认为它们是安全处置的关键核素。近...  相似文献   

10.
缓冲/回填材料--膨润土研究国际进展   总被引:6,自引:0,他引:6  
缓冲材料是高放废物地质处置库多重屏障系统重要组成部分。本文从膨润土特性、气体渗透性、膨润土中有机物、微生物腐蚀、孔隙水化学、蒙脱石向伊利石转化、核素迁移等方面简要总结了该领域的一些研究进展,旨在推动我国在这一领域的研究走向深入。目前,国内的工作主要集中于材料物理性能的测试,作者期待国家有关部门能加大经费支持力度。以推动这一领域的研究进展。确保高放废物的安全处置,为能源工业发展保驾护航。  相似文献   

11.
贮氢材料在氚技术中的应用   总被引:8,自引:2,他引:8  
简要介绍了在氚技术中应用贮氢材料的意义和在氚技术中应用的贮氢材料的研究现状、典型贮氢材料的特性、贮氢材料用于氚技术的优点,及贮氢材料在工业规模的氚处理技术中的应用情况。  相似文献   

12.
镅锔分离研究进展   总被引:1,自引:0,他引:1  
乏燃料后处理产生的高放废液中Am和Cm是长期释热的主要来源,将它们分离出来并进一步进行分离和处置,对高放废物的长期安全处理处置具有重要意义。另外,超钚元素生产涉及Am和Cm材料的获取以及辐照后靶件中Am和Cm的化学分离。因此Am、Cm的分离一直是锕系元素化学与材料研究的重要领域之一。但是Am、Cm之间的分离相当困难,水溶液中Am、Cm基本均以正三价离子形式存在,化学性质非常相似。早期的离子交换法分离因子低,近年来主要研究将Am(Ⅲ)氧化到高价态实现分离,或通过Am、Cm与配体的亲和力差异、不同配体组合产生“推拉效应”以提高分离因子。本文综述了相关研究现状,概述了主要流程研发情况,并展望了该领域的研究趋势。  相似文献   

13.
铀的高效富集和分离对于核能可持续发展具有重要意义。吸附法作为一类重要的分离方法,吸附材料在其中扮演着关键角色。本文综述了近年来基于仿生多巴胺化学制备铀吸附材料的研究进展。第一部分首先介绍多巴胺化学的基本原理,着重讨论多巴胺的自聚合机理、聚集体结构及其聚合过程的控制因素;第二部分列举利用多巴胺化学表面改性制备不同类型的复合吸附材料,包括碳基纳米材料、多孔硅基材料、无机黏土矿物、金属或共价有机框架化合物、纳米高分子纤维等,探讨针对不同材料体系的多巴胺改性方法,以及对吸附材料组成、结构的影响;第三部分集中介绍多巴胺改性材料对铀的吸附性能研究,按照材料功能基团的差异,分为本征多巴胺涂层、多巴胺-无机复合涂层、多巴胺-高分子复合涂层三个方面,阐述各类材料对铀的吸附行为和机理。本文最后总结了多巴胺化学在吸附材料制备方面尚存在的挑战,并展望了本领域的发展前景。  相似文献   

14.
氚自然衰变生成3He,3He的聚集会引起贮氚材料物理和化学性质的明显变化。本文以氚化钛为研究对象,运用XRD研究其晶体结构在贮存初期的演化规律,对氦在氚化钛贮存初期的时效行为进行了研究。结果表明:氚化钛特征峰的宽化是由氚衰变生成的3He累积所引起,氚化钛晶体结构保持fcc结构不变。  相似文献   

15.
This paper addresses topics of research and development (R&D) being challenged for realization of concrete cask storage of spent nuclear fuel in Japan. Comparison between metal cask storage and concrete cask storage is addressed. Background of these R&D and current status of technology on spent fuel storage are described. Need and design concepts of concrete cask storage technology, tests and evaluation of integrity of spent fuel, materials, concrete casks under normal and accident conditions, monitoring technology, etc. are systematically arranged and introduced. Topical problems of these R&D are described.  相似文献   

16.
石墨炔作为一种新型的二维碳材料,自2010年首次合成后即得到了广泛的关注和研究。目前石墨炔在储能、催化、电化学、医药和吸附等领域已经展现出广阔的应用前景。石墨炔具有特殊三角孔洞结构和大π键特性,对不同离子具有选择性吸附潜力,在放射化学领域有着潜在的应用价值。之前的工作表明,石墨炔在镧锕分离、钍铀分离、锶铯分离中具有显著的效果。与此同时,锕系离子被石墨炔吸附后呈现单离子态。石墨炔的π体系与锕系单离子的5f电子之间发生强烈的键合作用。而5f电子的反馈作用对锕系离子的选择性分离至关重要。本文首先对石墨炔的合成、性质、应用进行简短的综述,进而对石墨炔在放射化学领域中的初步结果进行介绍,最后对石墨炔在放射化学领域的应用进行了展望。  相似文献   

17.
In order to do alignment between the timing signal and the synchrotron X-ray pulse on the sample spot in the time domain,measuring time structure of the storage ring on the sample spot inside the experimental hutch is a foundational step during the time-resolved experiments using the pulsed synchrotron X-rays with the time structure defined by the storage ring.In this work,the method of time-resolved X-ray excited optical luminescence(TRXEOL)was designed and implemented to do the measurement.It is based on the principle of time-correlated single photon counting techniques.The measurement system consists of a spectrometer with a detector of photomultiplier tube,a timing system,a set of nuclear instrument modules and a luminescent material of zinc oxide.The measurement was performed on the X-ray absorbed fine structure spectrum beamline at Shanghai Synchrotron Radiation Facility.The results show that this method can be used to measure the time structure of the storage ring with a precision of less than 1 ns.The measurement system can also be used for the time-resolved research for the optical luminescent materials.  相似文献   

18.
轻锕系元素的分离在核工业、环境放射化学、核取证等领域均具有举足轻重的地位。固相萃取法是分离轻锕系元素的主要方法之一,其核心在于选择吸附性能优异且物化稳定性优良的吸附剂。多孔金属膦酸盐是由金属中心和有机膦酸配体结合形成的一类无机-有机杂化材料,它们不仅具备比表面积高、活性位点丰富、物化稳定性好等优点,而且膦酸基团对轻锕系元素优异的结合能力赋予其良好的吸附性能,因此有望用作轻锕系元素的吸附剂。本文综述了多孔金属膦酸盐的合成途径与结构,重点关注了此类材料在轻锕系元素分离领域的应用进展,包括金属膦酸盐对轻锕系元素的吸附性能、吸附机理、材料稳定性与实用化处理方法等方面,并对该领域的发展进行了展望。  相似文献   

19.
在放射化学领域,镧系和锕系元素分离一直是研究热点之一。为实现燃耗分析,需要对溶解液中的镧系和锕系元素进行多组分的系统分离。常用的高压液相色谱法等由于处理量较小,无法满足分离要求。而液液萃取法具有较高的处理量,分离效率却较低。高速逆流色谱法(HSCCC)是一种新型的不需要固体载体的分离方法,它结合了液液萃取和分配色谱两者优点,已被广泛应用于生物活性物质的分离。其独特的优点在放化领域也引起了研究者们的注意。为此,本文介绍了高速逆流色谱的基本结构与原理特点,并就高速逆流色谱在镧系和锕系元素分离中的研究进展进行了综述,展望其在放化领域的应用前景。  相似文献   

20.
置换色谱法是一种较有优势的氢同位素分离方法,而分离材料的性能是决定置换色谱法分离效果的一个关键因素。目前研究的置换色谱分离材料包括钯材料和很多非钯材料。钯虽然价格昂贵,但由于其出色的分离性能而难以用廉价金属或合金来替代。本文简要介绍了置换色谱法分离氢同位素的原理,重点介绍了几种置换色谱含钯分离材料(纯钯、载钯硅藻土、载钯氧化铝、钯铂合金等)的性能,初步分析了置换色谱分离材料的发展方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号