首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
王晓霞  谢仲生 《核动力工程》2005,26(6):535-538,543
针对CANFLEX组件装载MOX燃料在CANDU重水堆中的应用进行了时均和瞬态验证计算。计算结果表明,最大通道功率和最大棒束功率均未超过限值。勿需对堆芯结构和运行模式做重大改变即可完成从天然铀堆芯向MOX堆芯的过渡。提出了应用MOX燃料的PWR/CANDU联合燃料循环策略。估算表明,秦山三期CANDU堆采用先进PWR/CANDU联合燃料循环,将使燃耗提高到13900MW·d/t(U);相对于PWR和CANDU堆各自独立的燃料循环,每年节省天然铀资源180t,减少乏燃料处置量约128t。  相似文献   

2.
对压水堆乏燃料后处理回收铀(RU)在秦山三期CANDU堆中应用的可行性和经济性进行分析。使用ORIGEN2程序.对后处理回收铀在生产后放置不同时间后核素的成份和放射性活度进行了计算。证明RU燃料元件生产的放射性水平是可以接受的。使用DRAGON/DONJON程序对应用RU的秦山三期CANDU堆的时均堆芯和瞬时堆芯校验分析表明:采用简单的2燃耗区,2、4棒束的换料方案能满足最大通道功率、最大棒束功率限制。通过放射性分析和堆芯物理分析可以看出,秦山三期CANDU堆在不改变堆芯结构及运行模式的条件下,从天然铀(NU)燃料过渡到RU燃料是可行的。通过对秦山三期CANDU堆应用RU的经济性分析,可以看出PWR/CANDU联合核燃料循环的策略既可节约铀资源(23%),提高燃料的能量输出(4l%).又减少了废燃料的处置量(66%).可大大降低核电成本。  相似文献   

3.
逐层面耦合堆芯功率分布扩展计算方法研究   总被引:1,自引:0,他引:1  
介绍堆芯功率分布扩展的逐层面耦合法理论模型和逐次超松弛迭代求解方程组的方法。利用FORTRAN90语言编制堆芯功率分布扩展程序EXP,然后用大亚湾核电站1号机组第11循环理论计算和实测数据,对扩展计算结果进行敏感性分析和验证。结果表明:该方法利用理论计算功率建立起全堆芯各组件的耦合关系,利用实测功率对全堆芯各组件功率进行求解,进而完成功率分布扩展计算的方法是正确有效的,对测点失效情况有较好的适应性。  相似文献   

4.
2017年6月秦山第三核电厂CANDU6型重水反应堆完成首批高比活度医用59 Co调节棒入堆。文章对医用钴调节棒重新进行堆芯物理建模,采用PPV基本栅元程序,对全堆芯进行RFSP三维扩散跟踪计算。与工业钴调节棒对比,基于堆芯历史通量,模拟辐照18个月钴调节棒堆芯表现,分析医用钴调节棒长期堆内价值趋势与比活度变化;通过模拟数据与堆芯试验数据比较,分析验证医用钴调节棒组件代替工业钴调节棒组件后,单棒束与棒组反应性价值符合设计要求,变更过程中没有引入新的误差;堆芯的功率分布、反应性控制能力等主要安全分析参数改变符合设计预期。调节棒变更后在满足医用钴源高效生产的同时,仍能有效展平堆芯功率分布,调节堆芯反应性。  相似文献   

5.
杨宁  唐秀欢  朱磊 《辐射防护》2018,38(3):234-239
针对反应堆事故源项研究中功率运行史统计繁冗的难题,以西安脉冲堆为对象,建立了脉冲堆功率参数计算数学模型,开发了基于ORIGEN2程序的堆芯核素存量自动跟踪功能示范程序ORBITER,并进行了验证。结果表明,堆芯核素存量跟踪迭代算法技术路径是可行,计算精度可接受。在基准算例66.5 MW·d/tU的燃耗深度下,与ORIGEN2传统算法比较,三个典型核素中85Kr偏差最大,其值为2.00%,偏差主要来自于算法对辐照/衰变过程的微分化处理。堆芯核素存量跟踪迭代算法借助计算机自动化技术自动跟踪反应堆功率运行史,实时输出堆芯内核素存量,不仅显著降低了人工统计所需的时间和体力成本,也大幅提高了源项数据获取时效性。  相似文献   

6.
针对现有船用反应堆安全分析仿真软件不能计算堆芯精细功率分布这一缺陷,开展了堆芯径向和轴向精细功率分布重构计算和分析。采用三次样条插值法对轴向精细功率进行重构计算,采用双线性和双三次插值法对径向精细功率进行重构计算,并与采用细网差分的专业物理程序的计算结果进行比较。结果表明,本工作精细功率重构计算简单、可靠,有较高的精度,对船用反应堆安全运行分析和监督管理具有重要的参考价值。  相似文献   

7.
由于反应堆堆芯存在大量重复结构,本文研究采用边界流响应矩阵的组件等效方法处理这些复杂结构。为使组件表面入射流J+与表面出射流J-的耦合关系为线性关系,将组件的裂变截面除以堆芯的keff,将堆芯物理计算的本征值问题转化为一固定源问题,这样只需得到J+与J-之间的线性耦合系数即可确定二者的耦合关系。然后通过在全堆芯范围内进行迭代,求出堆芯的keff及各组件的表面流,进而得到堆芯各处的通量分布形状。采用二维SN程序SN2D,对C5G7基准题的等效误差进行计算分析。结果表明:在不进行能群和角度归并的情况下,采用该方法可得到较为精确的keff及组件功率,但栅元功率分布仍存在一定误差,需在进一步研究中加以解决。  相似文献   

8.
为研究钍铀燃料在CANDU6堆中的应用,采用DRAGON/DONJON程序,对使用离散型钍铀燃料37棒束组件的CANDU6堆进行时均堆芯分析。结果表明,组件采用235U富集度为2.5%的铀棒以及第1、2、3圈布置钍棒的37棒束组件,堆芯在8棒束换料、3个燃耗分区的方案下,组件的冷却剂空泡反应性较使用天然铀的37棒束组件(NU-37组件)与采用混合钍铀元件棒的37棒束组件更负;堆芯最大时均通道/棒束功率满足小于6700?kW/860?kW的限值;燃料转化能力比采用NU-37组件时更高;卸料燃耗可到达13400?MW·d/t(U)。研究表明,所设计的离散型钍铀燃料37棒束组件可用于现有CANDU6堆芯,且无需对堆芯结构及控制机构作重大改造;燃料组件和堆芯设计方案可为钍铀燃料在CANDU6堆芯的应用提供参考。   相似文献   

9.
李惠云  高拥军 《核动力工程》1997,18(3):205-210,225
介绍了秦山300MW核电厂第一、二循环堆芯运行跟踪计算和运行实测数据,预测计算了至寿末各燃耗阶段的燃耗状态,其中包括反应堆运行历史,随燃耗变化的同位素数据,轴向和径向堆芯功率分布,功率峰因子和位置,轴向功率偏移,燃耗分布以及其它与反应堆运行有关的数据。文中还介绍了跟踪计算所用的程序系统和计算方法,计算结果与秦山核电厂的实测数据的比较。比较结果证明,跟踪计算结果与秦山实测数据符合很好。计算出的数据可  相似文献   

10.
堆芯功率分布作为堆芯核设计的关键指标,其计算精度对于评价核电厂的安全性和经济性尤为重要。作为国内首套自主核电软件包,NESTOR软件的计算精度和适用性是其应用的基础。本文基于随机取样统计方法和误差传递理论,通过分析程序物理模型引入的不确定性和堆芯状态参数不确定性引入的不确定性,将两者联合起来得到最终功率分布计算的不确定性。结果表明:随机取样统计方法在核设计软件计算不确定性研究中是可行的,将堆芯功率分布拆分为组件内功率分布计算不确定性和组件功率计算不确定性分别分析,再由误差传递理论联合得到在95%置信度和95%概率下由程序物理模型引入的径向功率峰因子计算不确定性为±3.653%,由参数不确定性引入的径向功率峰因子计算不确定性为±0.964%。从而得出最终径向功率峰因子的计算不确定性为:±3.778%。与国外成熟工程核设计软件包的计算精度相当,为NESTOR核设计软件包的应用和验证奠定了基础。   相似文献   

11.
蔡宛睿  夏虹  杨波 《原子能科学技术》2018,52(12):2130-2135
堆芯功率分布包含了堆芯内的大量信息,由于在反应堆运行过程中无法直接测量堆芯内所有位置的功率,因此需通过其他方法得到堆芯三维功率分布的情况。本文以秦山一期工程为对象,利用堆外中子探测器在不同棒位和不同功率下的计数及BP神经网络对堆芯三维功率分布进行重构计算,并利用REMARK程序对该计算结果进行验证。结果表明,该功率重构方法能在反应堆运行的50%~100%功率范围内,较好地呈现堆芯三维功率分布。  相似文献   

12.
对秦山三期CANDU堆应用稍浓铀的可行性用DRAGON/DONUON程序做了时均堆芯研究分析确定秦山三期采用稍浓铀的最优富集度为1.125wt%并对使用此富集度稍浓铀的秦山三期CANDU堆做了基于通道年龄模型的瞬时堆芯检验计算结果表明,在使用2.4棒束换料及简单的分2个燃耗区,外内区燃耗比为0.9时,能够满足秦山三期运行执照限制秦山三期CANDU堆使用此富集度燃料的经济效益的初步分析表明,它将使燃耗提高到185GWd/t(U),每年节省天然铀资源约53吨,减少乏燃料约116吨,节省燃料循环费用约6700万元计算表明,勿需对秦山三期堆芯结构和运行模式做重大改造即可完成天然铀向稍浓铀的过渡。  相似文献   

13.
钍燃料的利用对于缓解核燃料资源短缺具有重要意义,坎杜型反应堆(Canadian Deuterium Uranium,CANDU)在堆芯布置、中子利用效率及先进燃料循环方面具有较高的灵活性,使得其在CANDU反应堆中引入钍燃料循环更具现实意义。CANDU型反应堆中钍基燃料应用关键基础技术研究是加拿大与我国正在开展的合作课题,其中开发自主的CANDU堆堆芯热工水力设计和安全分析程序是钍基燃料应用必不可少的设计工作之一。本文针对CANDU型反应堆热传输系统结构特点,采用FORTRAN程序设计语言开发了适用于CANDU型反应堆热传输系统的热工水力瞬态分析程序CANTHAC(CANDU Thermal-Hydraulic Analysis Code)。利用CANTHAC对钍基先进CANDU堆(Thorium-based Advanced CANDU Reactor,TACR)进行了瞬态分析,计算工况包括满功率稳态、无保护蒸汽发生器(Steam Generator,SG)二次侧给水温度降低事故及完全失流事故。其中,满功率稳态计算结果与清华大学设计的钍基先进CANDU堆TACR设计值吻合较好,相对误差不超过2%,在可接受范围内;无保护SG二次侧给水温度降低事故及完全失流事故在计算条件下所得的燃料温度及系统压力等关键热工水力参数均在安全限值内,满足安全准则要求。程序为模块化编程,便于移植和改进,具有一定的通用性,为进一步研究工作奠定了基础。  相似文献   

14.
超临界水冷堆核热耦合计算研究   总被引:1,自引:1,他引:0  
以美国超临界水堆(SCWR)设计为研究对象,开发超临界水堆的物理-热工耦合计算程序。该计算程序采用Dragon和Donjon直接耦合计算,提高计算精度和速度;并在功率迭代中引入松弛因子,通过部分迭代法解决传统迭代方法不收敛的问题。轴向温度和密度分布的计算结果验证了程序的有效性和准确性。  相似文献   

15.
压水堆堆芯的功率分布可由中子扩散方程的高阶谐波线性展开,结合中子探测器的读数,可实现反应堆堆芯功率分布的实时监测。监测精度由探测器的精度以及参考堆芯与反应堆真实状态的相似度共同决定。由于反应堆运行状态具有复杂性和多样性,本文提出通过模拟反应堆的各种运行状态,并计算其高阶谐波,建立具有代表性的反应堆状态谐波数据库,对反应堆的功率进行在线监测的方法。应用大亚湾核电站1号机组的测量数据对该方法的监测精度进行验证的结果表明,监测误差均在±3%以内,满足工程要求。  相似文献   

16.
利用优化方法寻找压水堆最优的燃料装载格式,优化的目标函数为堆芯的功率峰因子,用物理原则指导下的直接搜索法寻找优化解。通过堆芯内燃料组件互换来搜索功率峰因子最小的燃料装载格式。搜索分两段进行:第一阶段是布置堆芯内部的新组件,以得到具有较小功率峰因子的合理装载格式;第二阶段是在上述合理装载格式基础上,布置堆芯内有燃耗的组件,以进一步降低堆芯的功率峰因子,得到优化装载格式。在优化过程中,可分别采用或随意组合采用3/2群粗网扩散理论和两群节块格林函数扩散理论计算每次换料后的反应堆两维功率分布及其它反应堆状态量,不仅保证了结果的准确性,而且可以节省CPU时间。除上述优化计算外,还能作燃耗、调临界硼浓度等计算。计算程序是采用FORTRAN-Ⅳ算法语言编制。  相似文献   

17.
在自主开发的数值反应堆物理计算程序NECP-X基础上开发了压水堆的换料循环计算功能,并针对某M310机组首循环、第2循环和第3循环的启动物理实验,以及针对前2个循环的燃耗进行了精细建模计算。计算值与实测值的比较结果表明:首循环、第2循环和第3循环启动物理实验的临界硼浓度、控制棒价值、温度系数计算结果误差均较小,符合验收准则;不同燃耗深度下的临界硼浓度、堆芯功率分布与实测值的比较结果显示,稳定燃耗点处最大硼浓度偏差为-39ppm(1ppm=10-6),最大的组件功率误差小于4.5%,随着燃耗的加深,堆芯功率的分布逐渐展平,误差逐渐减小。计算结果表明NECP-X程序已经具备商用压水堆启动物理实验和多燃料循环的计算能力。  相似文献   

18.
热管冷却反应堆(简称“热管堆”)高温运行下的结构热膨胀效应会显著影响反应堆的传热和中子物理输运过程。本文提出了一种考虑固体堆芯显著膨胀的几何更新和反应性反馈方法,并构建了基于动态几何的中子物理/热工/力学3场核热力耦合分析程序。在核热力耦合中主要考虑温度引起微观截面的变化、材料密度的变化以及热膨胀引起堆芯尺寸的变化。基于提出的核热力耦合方法,对MegaPower热管堆进行了核热力耦合分析,分析了不同松弛因子下,堆芯功率分布和径向功率因子的收敛性。核热力计算表明,热膨胀造成堆芯边通道的中子泄漏增加,从而产生负反应性反馈;同时,边通道中子泄漏增加加剧了功率分布的不均匀性,传热恶化,考虑核热力耦合后,径向功率因子从非耦合情形的1.20提升到1.23,燃料峰值温度增加11 K。   相似文献   

19.
《核动力工程》2015,(5):165-168
采用谐波展开法进行堆芯三维功率分布的在线监测,将堆芯三维功率分布用中子扩散方程的谐波进行展开,并利用堆内探测器读数信息进行展开系数的求解;采用非线性半解析节块法结合Krylov子空间法进行全堆芯谐波的求解,其计算时间约为采用细网差分法结合Krylov子空间法求解的1/100。基于谐波展开法理论开发堆芯三维堆芯功率分布在线监测系统NECP-ONION,采用国内典型压水堆电厂实测数据对该系统进行验证。结果表明,组件平均功率的在线监测系统重构值与电厂测量值之间均方根误差小于2%,基于谐波展开法开发的在线监测系统具有很高的计算精度。  相似文献   

20.
BEAVRS基准题是麻省理工学院计算反应堆物理小组2013年公布的压水堆三维全堆芯高保真计算基准题。本文使用传统两步法程序系统CASMO-4E/SIMULATE-3对其进行建模与跟踪计算。结果表明:在热态零功率(HZP)工况下,径向探测器反应率最大相对误差为-18.8%,与蒙特卡罗程序MC21程序的-16.1%相当;在燃耗深度为38.7 MW·d/tHM、堆芯功率为20.3%FP时,径向探测器反应率最大相对误差为-12.9%;在堆芯第1循环内,堆芯各燃耗点处临界硼浓度与测量值误差在40ppm以内,满足工程精度要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号