首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
以正十二烷/30%辛醇溶液为稀释剂,研究了2,6-双(5,6-二异丙基-1,2,4-三唑-3)吡啶(iPr-BTP)在硝酸介质中对镅和15种稀土元素的萃取行为,测定了各元素的萃取分配比,实验考察了水相酸度、iPr-BTP浓度、稀释剂组成、萃取时间、离子强度对萃取Am(Ⅲ)和Eu(Ⅲ)分配比的影响。iPr-BTP对镅萃取5rnin可达到平衡,而对铕的萃取动力学则较为缓慢,15min后方达到萃取平衡。硝酸浓度在0.2~1.0mol/L范围内时,Am/Eu的分配比基本不变。  相似文献   

2.
以正十二烷/30%辛醇溶液为稀释剂,研究了2,6-双(5,6-二异丙基-1,2,4-三唑-3)吡啶(iPr-BTP)在硝酸介质中对镅和15种稀土元素的萃取行为,测定了各元素的萃取分配比,实验考察了水相酸度、iPr-BTP浓度、稀释剂组成、萃取时间、离子强度对萃取Am(Ⅲ)和Eu(Ⅲ)分配比的影响。iPr-BTP对  相似文献   

3.
合成了1-苯基-3-甲基-4-氰硫基-5-吡唑酮(PMTCP),研究了该试剂单独萃取及其与2,2’-联吡啶协同萃取镅和铕的行为。实验结果表明,该试剂单独萃取镅和铕的能力都比较低,但优先萃取镅;含氮协萃剂2,2’-联吡啶的加入可以明显提高镅的萃取率,并将镅和铕的分离因数α(Am/Eu)由PMTCP单独萃取时的2.6提高到4.0。  相似文献   

4.
研究了以N,N,N’,N’-四辛基-3-氧戊二酰胺(TODGA)和N,N-二己基辛酰胺(DHOA)为萃取剂、正十二烷为稀释剂对Am(Ⅲ)和三价镧系元素的萃取行为,主要考察了萃取剂浓度、HNO3浓度、NaNO3浓度、金属离子浓度和温度的影响。结果表明:随着TODGA浓度的增加,TODGA/正十二烷和TODGA-DHOA/正十二烷两种萃取体系对Am(Ⅲ)和三价镧系元素的萃取分配比显著增加,DHOA对三价锕系和镧系萃取能力很弱,而DHOA的加入,对TODGA/正十二烷萃取Am(Ⅲ)和三价镧系元素具有一定抑制作用。TODGA萃取三价镧系元素的分配比随着镧系原子序数的增加而增加,Am的分配比与Eu相近。TODGA萃取稀土元素是放热反应,萃取过程中焓变起主导作用,吉布斯自由能变(-ΔG)变化的规律也表明随着镧系原子序数的增加,TODGA对其萃取能力增强。通过对TODGA萃取Am(Ⅲ)和三价镧系元素机理探讨,得到萃取反应方程式均为:M3+aq+3NO-3,aq+3TODGAorg→M(NO3)3·3TODGAorg  相似文献   

5.
以正十二烷作为稀释剂,研究了N,N'-二(2-乙基己基)二甘酰胺酸(HDEHDGA,简称HL)萃取剂对硝酸介质中Dy(Ⅲ)离子的萃取性能。结果表明:该萃取剂对Dy(Ⅲ)有良好的萃取性能,在硝酸浓度为0.3~4.0mol/L时,Dy(Ⅲ)的分配比(D(Dy))随水溶液中平衡酸度的增加先减小后增大,在HNO_3浓度大约为1.0mol/L时,分配比最小。萃取分配比随水相硝酸浓度变化的关系表明,HDEHDGA萃取Dy(Ⅲ)的机理随硝酸浓度变化而不同。从3.0mol/L HNO_3中萃取Dy(Ⅲ)的分配比与萃取剂浓度及硝酸根浓度的关系表明,萃取过程中HDEHDGA主要以中性萃取剂形式与Dy(Ⅲ)配位,萃取反应方程式可能为:Dy(Ⅲ)+2HL+3NO_3~-=Dy(Ⅲ))(HL)_2(NO_3)_3该反应为放热反应,反应的热焓为-63.38kJ/mol,降低萃取温度有利于HDEHDGA对Dy(Ⅲ)的萃取。  相似文献   

6.
实验研究二(2,4,4-三甲基戊基)二硫代膦酸(HBTMPDTP)对Pu(Ⅲ)的萃取行为。考察了搅拌时间、平衡水相pH、水相不同盐分、萃取剂浓度以及温度等因素对萃取平衡的影响。给出了萃取反应方程式,并计算获得了萃取平衡常数、萃取反应焓和熵。通过与文献中所报道的HBTMPDTP对Am(Ⅲ)、Cm(Ⅲ)的萃取行为比较可知,HBTMPDTP萃取Pu3+、Am3+、Cm3+的能力依次为Pu3+>Am3+>Cm3+。   相似文献   

7.
在硝酸介质中,研究了6,6′-二(5,6-二乙基-1,2,4-三嗪-3-基)-2,2′-联吡啶(6,6′-bis(5,6-diethyl-1,2,4-triazin-3-yl)-2,2′-bipyridine,C2-BTBP)/CHCl3体系对镅和镧系元素的萃取行为。重点考察了萃取时间、萃取剂浓度、水相硝酸浓度等因素对C2-BTBP萃取Am的影响。结果表明:C2-BTBP萃取镅时,10min达到平衡;D(Am)随酸度增大先增大后减小。在考察的酸度范围内,镧系元素的分配比均较小。提出了C2-BTBP/CHCl3体系分离三价锕系与镧系元素的概念流程,并经串级实验验证。萃取剂(C2-BTBP/CHCl3)浓度为0.04mol/L,料液酸度为1.0mol/L HNO3,洗涤液酸度为1.0mol/L HNO3,流比为AF∶AX∶AS=1∶1∶0.5,经6级萃取、4级洗涤后,镅的萃取率为99.93%,Am中Ln的去污因子大于103,Am中镧系元素的含量小于0.03%,可较好的实现镅和镧系元素的分离。  相似文献   

8.
双配位基有机磷萃取剂DHDECMP萃取Am(Ⅲ)的研究   总被引:3,自引:1,他引:2  
本文研究了用双配位基有机磷萃取剂N,N—二乙胺甲酰甲撑膦酸二已酯(DHDECMP)萃取镅的各种影响因素,包括DHDECMP的纯化,稀释剂的选择以及硝酸浓度,萃取剂浓度,盐析剂浓度,萃取平衡时间和温度等,并测定了模拟料液的Am的分配系数。还确定了反萃条件。研究了萃取机理,其主要萃取反应为: Am~(3 ) 3 NO_3~- 3DHDECMPAm(NO_3)_3.3 DHDECMP萃取过程是放热反应,其反应热△H_(Am)■-7.6 kcal/mol。  相似文献   

9.
为了解在惰气环境Pu(OH)4(am)与碳酸盐溶液中HCO-3,CO2-3的配位行为,考察了放置时间对Pu总浓度的影响;同时也考察了pH值、碳酸根总浓度变化对碳酸盐溶液中Pu的主要存在形态及溶解总浓度的影响。实验结果表明,HCO-3离子与Pu(OH)4(am)生成[Pu(OH)4(HCO3)2]2-(lg K=-2.61±0.18, lgβ=54.25±0.18)或[Pu(OH)2(CO3)2]2-(lgK=-2.61±0.18, lgβ=46.91±0.18);CO2-3离子与Pu(OH)4(am)生成[Pu(OH)4(CO3)2]4-(lgK=-3.52±0.11, lgβ=53.33±0.11)。可能的配位反应方程式为: Pu(OH)4(am)+2HCO-3 = [Pu(OH)4(HCO3)2]2-, Pu(OH)4(am)+2HCO-3 =[Pu(OH)2(CO3)2]2-+2H2O, Pu(OH)4(am)+2CO2-3=[Pu(OH)4(CO3)2]4-。  相似文献   

10.
以正十二烷为稀释剂,研究了甲基膦酸二甲庚酯(DMHMP)萃取剂对硝酸介质中Zr(Ⅳ)的萃取性能。从3.0 mol/L HNO3中萃取Zr(Ⅳ)的分配比与萃取剂浓度及硝酸根浓度的关系表明:萃取过程中DMHMP以中性萃取剂形式与Zr(Ⅳ)配位,萃取反应方程式主要为: Zr4++2DMHMP+4NO-3=Zr(NO3)4·2DMHMP 随着硝酸浓度的增大,还会生成Zr(NO3)4·2DMHMP·2HNO3和Zr(NO3)4·2DMHMP·3HNO3。该反应为放热反应,降低温度有利于DMHMP对Zr(Ⅳ)的萃取。  相似文献   

11.
选定2,6-二-(5,6-二正丙基-1,2,4-三嗪-3-取代)-吡啶(DPTP)萃取体系,以Am和Eu作为三价锕系与镧系元素的代表,实验考察平衡时间、萃取剂浓度、水相酸度等对Am与Eu萃取分配比的影响。在此基础上,提出了DPTP萃取锕系和镧系的概念流程,并用串级实验进行了验证。实验结果表明:经6级萃取、2级洗涤、6级反萃,Am的收率为98.42%,Eu的萃取率小于0.1%;有机相中Am、Eu的反萃率均大于99.9%;分离因子SFAm/Eu=45,SFEu/Am>103。  相似文献   

12.
研究了氨基羟基脲(HSC)与Pu(Ⅳ)的还原反应动力学,其动力学方程式为:-dc(Pu(Ⅳ))/dt=kc(Pu(Ⅳ))c1.06(HSC)c-0.43(H+)c-0.58(NO3-),在22.1℃时反应速率常数k=(11.8±1.1)(mol/L)-0.046•s-1,活化能为(71.0±1.0)kJ/mol。研究了氨基羟基脲浓度、H+浓度、硝酸根浓度、Fe3+浓度、UO22+浓度对氨基羟基脲与Pu(Ⅳ)还原反应速率的影响,增加氨基羟基脲浓度,降低H+浓度、硝酸根浓度,Pu(Ⅳ)还原速度增加;UO22+浓度和Fe3+浓度对Pu(Ⅳ)还原速度基本无影响。  相似文献   

13.
以甲酸乙酯和N-甲基盐酸羟胺为主要原料,在乙醇-水体系中合成N-甲基甲异羟肟酸(NMFHA),并通过元素分析、红外光谱、质谱分析和核磁共振波谱等方法对其结构进行表征。TTA萃取法测定结果表明,在1.0mol/LHNO3体系中,Np(Ⅳ)、Pu(Ⅳ)与NMFHA形成稳定的1∶2的配合物,其累积稳定常数分别为:β1(Np(Ⅳ))=8.83×109,β2(Np(Ⅳ))=1.01×1019;β1(Pu(Ⅳ))=7.78×1010,β2(Pu(Ⅳ))=5.80×1019。  相似文献   

14.
The solvent extraction of uranium(Ⅵ) and europium(Ⅲ) from nitric acid solution was studied with picolinamide dissolved in ethylene dichloride. The distribution ratios of U(Ⅵ) and Eu(Ⅲ) as a function of aqueous HNO3 concentration, extractant concentration in organic phase and temperature as well as the salting-out agent concentration have been measured. The experiment results show that picolinamide has higher extractability for U(Ⅵ1)than for Eu(Ⅲ). The composition of extracted species, equilibrium constants and enthalpies of extraction reaction have also been presented.  相似文献   

15.
研究在模拟高放废液中加入乙羟肟酸(AHA)以消除酰胺荚醚(TBOPDA)萃取模拟高放废液过程中的界面污物。萃取实验结果表明:在模拟高放废液中加入AHA可显著降低Zr(Ⅳ)在两相中的分配比,此时,Pu(Ⅳ)的分配比仍足够大,它不影响TBOPDA对Pu(Ⅳ)的回收。反萃实验表明:在所研究的反萃条件下,1级反萃即可有效反萃TBOPDA有机相中的Zr(Ⅳ);3次错流反萃可有效反萃TBOPDA有机相中的Pu(Ⅳ);反萃液中加入AHA对Am(Ⅲ)的累计反萃率影响很小;提高反萃液的酸度可抑制TBOPDA有机相中Am(Ⅲ)的反萃。  相似文献   

16.
铼羰基化合物的制备及其在小鼠体内的生物分布   总被引:1,自引:0,他引:1  
选择三齿配基L1,L2,L3及L4(L1 =组氨酸, L2 =次氮基三乙酸,L3= 2-吡啶甲基胺 N, N-二乙酸,L4 =二(2-吡啶甲基)-胺)作为双功能螯合剂可以连接受体、多肽、蛋白等靶向分子,用于设计合成新的以[188Re(CO)3]+为核心的放射性药物。标记实验表明,4个配基的浓度在1×10-5~1×10-4mol/L,反应时间为30min时,放射化学产率大于90%,用HPLC分离后,放射化学纯度大于95%。电泳实验表明,配合物显示不同的价态。稳定性实验表明,4种配合物在体外稳定,24h几乎不发生分解。组氨酸与半胱氨酸竞争实验说明,24h内4个配合物很难发生配基与半胱氨酸的交换反应,而在组氨酸溶液中,除L2形成的配合物相对来说不稳定外,其它3个较稳定。是否在体内有很高的稳定性,还需实验进一步证实。小鼠动物试验表明,4个配合物均能较快地从血液和多数组织器官中清除,主要在肝和肾中浓集,是较理想的双功能螯合剂。  相似文献   

17.
以N,N,N′,N′-四辛基-3-氧戊二酰胺(TODGA)为代表的酰胺荚醚类萃取剂可以有效萃取高放废液中的An(Ⅲ)和Ln(Ⅲ),为防止Zr4+、Pd2+等裂片元素萃入有机相,通常需要加入H2C2O4作为水相络合剂,目前,H2C2O4对TODGA萃取Ln(Ⅲ)的影响尚未报道。本工作研究了HNO3、H2C2O4浓度对TODGA或TODGA+TBP体系萃取Nd3+的影响,同时测定了有机相中的H2C2O4浓度,并用紫外-可见吸收光谱分析了有机相中的H2C2O4与有机相中Nd3+的配位情况。研究结果表明:HNO3浓度在1.0~3.0 mol/L的范围内,Nd3+的分配比D(Nd3+)随HNO3浓度的增加而增加;H2C2O4浓度在0.1~0.5 mol/L的范围内,D(Nd3+)随H2C2O4浓度的增加而增加。HNO3浓度在1.0~3.0 mol/L的范围内,萃入有机相中H2C2O4浓度随HNO3浓度的增加而减小,且存在于有机相中的H2C2O4并未与有机相Nd3+配位。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号