首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
聚羧酸系减水剂对铝酸盐水泥性能的影响   总被引:1,自引:0,他引:1  
测定了自制聚羧酸高效减水剂不同掺量对铝酸盐水泥净浆扩展度、凝结时间及胶砂强度的影响,通过扫描电镜测试了水化产物的形貌,对聚羧酸高效减水剂对铝酸盐水泥早期结构的作用机理进行了分析。结果表明:使用自制聚羧酸高效减水剂在适宜掺量时能显著提高铝酸盐水泥的净浆扩展度,并且具有良好的扩展度保持性能;标准稠度时,聚羧酸高效减水剂的掺入使铝酸盐水泥净浆的初凝时间略有延长,随掺量的增大会显著延长终凝时间;相同水灰比时,较低掺量聚羧酸高效减水剂对铝酸盐水泥的1d抗折强度和抗压强度影响不大,掺量大于0.6%时,会显著降低铝酸盐水泥的1d抗折强度和抗压强度,但聚羧酸高效减水剂掺量不同,对铝酸盐水泥胶砂3d抗折强度和抗压强度影响不大。  相似文献   

2.
以甲基烯丙基聚氧乙烯醚(TPEG)、烯丙醇聚氧乙烯醚(APEG)、丙烯酸(AA)为原料,分别以双氧水(H_2O_2)和过硫酸铵((NH_4)_2S_2O_8)为引发剂,采用原位聚合法合成了聚羧酸系减水剂。通过对合成的聚羧酸减水剂进行水泥净浆流动度试验,结果表明自制的聚羧酸减水剂对水泥浆体有较好的分散性和分散性保持性。在红外线光谱的检测下得到了试验所需观测到的羟基、羰基、醚键等官能团。  相似文献   

3.
本试验采用γ-(甲基丙烯酰氧)丙基三甲氧基硅烷KH570替代部分丙烯酸,通过自由基聚合反应,制得硅烷改性聚羧酸减水剂,选取2个变量进行单因素试验设计:温度、KH570掺量,以掺加0.5%的Na_2SO_4和不掺的净浆体系的流动度用来检验硅烷改性聚羧酸减水剂的分散性能。结果表明:聚合反应的最优方案为T=30℃,KH570=3.67%,但掺加Na_2SO_4组的主要影响因素为温度。与不掺组体系不同,表明由于Na_2SO_4的掺入,减水剂分散性能会受到不良影响。  相似文献   

4.
选用聚羧酸减水剂加到水泥净浆中,利用测定水泥、黏土和石粉的吸水性,同时,通过对水泥净浆流动度和抗压强度等性能的研究,探讨黏土和石粉含量(0、0.5%、1%、2%、4%、8%)对掺聚羧酸减水剂的净浆性能影响规律。结果表明:掺减水剂的浆体,随含泥量的增大,其流动度与7、28 d抗压强度均降低。掺减水剂的浆体,随石粉含量的增加,其流动度变化不大;含量小于4%时,试块7、28 d抗压强度基本不变,甚至增大。黏土和石粉同时取代水泥时,其含量小于2%时,对掺聚羧酸减水剂的净浆7、28 d抗压强度影响不大;但当含量超过0.5%,掺聚羧酸的净浆流动度明显下降。  相似文献   

5.
梳形聚羧酸系减水剂与水泥的相容性研究   总被引:14,自引:2,他引:14  
选用4种梳形聚羧酸系减水剂、4种水泥、3种可溶性硫酸盐、2种矿物超细粉等原材料,通过测试掺减水剂水泥浆体的Zeta电位、净浆流动度损失以及混凝土性能等,说明聚羧酸系减水剂结构与性能、水泥组成与性能、电解质多价阳离子及矿物超细粉掺量等对聚羧酸系减水剂与水泥之间的相容性有重要影响.  相似文献   

6.
通过不同工艺合成4种聚羧酸减水剂,探索粉磨时间、石膏掺量、熟料来源等对净浆流动度及流动性损失的影响,并开展水泥与减水剂吸附机理探索。试验结果表明,延长粉磨时间、提高石膏掺量均有利于外加剂对水泥颗粒的吸附,但延长粉磨时间对净浆初始流动性不利,且粉磨时间、水泥中石膏掺量、熟料来源、聚羧酸减水剂性能等均会影响聚羧酸减水剂与水泥的适应性。  相似文献   

7.
通过水泥净浆扩展度实验,研究了普通型聚羧酸减水剂和缓释型聚羧酸减水剂与不同胶凝体系的相容性,试验结果表明:普通型聚羧酸减水剂和缓释型聚羧酸减水剂与不同的胶凝体系形相容性较好,净浆扩展度均无经时损失;在水泥-粉煤灰体系中,达到饱和掺量之前,相比较普通型减水剂,缓释型减水剂有更好的工作性保持能力,达到饱和掺量之后,普通型减水剂和缓释型减水剂有一定的工作性保持能力;在水泥-矿渣粉体系中,缓释型聚羧酸减水剂超掺时,混凝土拌合物易出现离析。  相似文献   

8.
在混凝土中能提高混凝土早期强度的无机盐应用非常广泛,但这些无机盐的加入对减水剂与水泥的适应性有很大影响。本文采用自磨水泥,通过测试不同掺量NaCl,CaCl2,Na2SO4下水泥净浆扩展度损失和凝结时间,对高效减水剂与水泥的相容性影响进行了试验研究。结果表明:随NaCl,CaCl2,Na2SO4掺量的增加,掺高效减水剂的水泥净浆初始扩展度及30min,60min扩展度保留值均变小,在掺加质量相同的情况下,其影响顺序为CaCl2〈NaCl〈Na2SO4。  相似文献   

9.
本文主要对不同品种、不同强度标号水泥掺加聚羧酸高性能减水剂的净浆流动性和混凝土部分性能进行试验研究。通过分析研究,讨论了水泥对添加聚羧酸减水剂的净浆和混凝土性能试验的影响,以推动聚羧酸减水剂在混凝土中的广泛使用。  相似文献   

10.
对于聚羧酸减水剂的合成,本文研究了合成工艺对于聚羧酸减水剂性能的影响,并且得到分散性能优异的减水剂合成配方和生产工艺过程,而且研究了市场上所关注的高性能减水剂与水泥的复合性能。本研究是以甲基烯丙基聚氧乙烯醚(又称改性聚醚—TPEG)、丙烯酸(AA)为原料,以5%的双氧水(H2O2)为引发剂,采用原位聚合与接枝的合成方法合成聚羧酸系减水剂。以水泥净浆流动度来进行实验对比,通过调整方案,确定合成聚羧酸减水剂的较优方案:n(TPEG):n(AA)=1:3.27,双氧水掺量为2.0%。最佳合成工艺的反应条件,反应温度为60℃,反应时间为4h~5h。合成的聚羧酸减水剂在低掺量(2.0%,固含量为10%),初始水泥净浆流动度为302mm,30min后298mm。最佳的条件下合成的聚羧酸减水剂水溶液的固含量为40.32%,pH值为7.3。  相似文献   

11.
《混凝土》2014,(7)
为适应混凝土高性能化的发展需要,混凝土外加剂的高性能化也成为必然。研究了高性能缓释型聚羧酸减水剂合成条件对水泥净浆流动性能的影响,确定了适宜的合成反应条件。甲基丙烯酸甲酯掺量在8%左右,甲基丙烯磺酸钠掺量为2%~3%,引发剂掺量为6%,反应温度在70℃,反应时间为6h时,制备出了缓释性能较好的高性能缓释型聚羧酸减水剂。掺入该种缓释型聚羧酸减水剂的水泥试样,水泥水化温度峰值有明显的降低,峰值也有推迟现象。扫描电镜可以观察到掺入该种缓释型聚羧酸减水剂水泥水化产物形貌,表明其具有良好的缓释性能。  相似文献   

12.
研究了白云岩石粉对水泥净浆和砂浆流变性能的影响以及作用机理.结果表明:内掺白云岩石粉后,水泥净浆流动度随着石粉掺量的增加而增大,砂浆扭矩随着石粉掺量的增加而减小,内掺石粉质量分数超过12%后水泥净浆流动度增加更显著;含石粉砂浆的需水量比为93%,相同质量石粉的需水量比水泥小,使得水泥净浆流动度随石粉掺量增加而增大;石粉对减水剂具有吸附作用,能够增大水泥净浆流动度或砂浆流变性能;水泥颗粒和石粉颗粒表面Zeta电位分别为-1.76mV和-8.94mV,二者对阴离子型聚羧酸系减水剂的吸附能力不同,聚羧酸系减水剂会优先吸附于水泥颗粒表面上.  相似文献   

13.
本研究选用科之杰新一代聚羧酸高效减水剂作为研究对象,以水泥净浆为载体,主要探讨了不同掺量高效减水剂对水泥净浆收缩性能以及强度的影响,聚羧酸减水剂有利于降低水泥净浆的干燥收缩值。  相似文献   

14.
研究了4种单矿物黏土(钠基蒙脱土、钙基蒙脱土、伊利土、高岭土)对掺聚羧酸减水剂水泥净浆流动度的影响,测定了单矿物黏土的水-黏土质量比及其对聚羧酸减水剂的吸附量,以及在此基础上单独补偿水或减水剂后单矿物黏土对聚羧酸减水剂分散性能的影响.结果表明:补偿水或聚羧酸减水剂之后,基本可消除伊利土、高岭土对水泥净浆流动度的影响,但蒙脱土的影响仍显著存在;对吸附了聚羧酸减水剂的单矿物黏土进行的红外光谱、X射线衍射分析表明,蒙脱土对聚羧酸减水剂的层间吸附是导致其对聚羧酸减水剂吸附量和聚羧酸减水剂分散性的影响比其他单矿物黏土大的主要原因.  相似文献   

15.
采用正交试验方法 ,研究了乙烯基单体三元共聚合成聚羧酸型高效减水剂 ,得出了一种合成聚羧酸系高性能减水剂的最佳配方 ,并讨论了产品对水泥净浆流动度和混凝土减水率的影响。结果表明该产品具有掺量低 ,减水率高 ,混凝土性能优良等特点  相似文献   

16.
黄世谋  任鹏程 《山西建筑》2014,(32):118-119
通过磷酸盐与聚羧酸高效减水剂复掺的水泥净浆流动度和标准稠度凝结时间的实验研究,分析了磷酸盐与聚羧酸高效减水剂复掺对水泥分散性能的影响,指出磷酸盐与聚羧酸高效减水剂对水泥工作性能影响甚微,焦磷酸钠、六偏磷酸钠、三聚磷酸钠均可单独作为缓凝剂与聚羧酸复配使用。  相似文献   

17.
本课题以科之杰Point-M聚羧酸减水剂的掺量为变量,主要采用了Minislump微型坍落度仪法和水泥微结构模型法,研究不同减水剂掺量对水泥体系流动度,水泥胶砂强度以及收缩率的影响。结果表明,当减水剂掺量低于0.25%时,能够一定程度地提高水泥净浆流动度和水泥胶砂强度,并且抑制水泥胶砂的收缩;当聚羧酸减水剂掺量达到0.25%时,水泥体系的各项性能都达到了最优;当聚羧酸减水剂掺量超过0.25%时,1水泥净浆的流动性能基本与掺量在0.25%时一致;2水泥胶砂的抗压和抗折强度都发生明显的下降,甚至低于空白组;3水泥胶砂的收缩率明显增大,甚至超过空白组。  相似文献   

18.
新型木聚系高效减水剂与水泥的适应性   总被引:1,自引:1,他引:0  
通过微型坍落度筒试验,探讨了水泥中混合材种类(粉煤灰和矿渣)及掺量、碱含量、C3A含量和水泥细度对木聚系高效减水剂(LGCS)与水泥适应性的影响.结果表明:随混合材掺量的增大,掺LGCS水泥净浆流动度显著提高,LGCS与水泥适应性增强;随碱含量的升高,掺LGCS水泥净浆流动度迅速降低,LGCS与水泥适应性呈劣化趋势,其中以掺木聚脂肪族高效减水剂(LGAS)水泥净浆表现最为明显;C3A含量的增大使得掺LGCS水泥净浆流动度逐渐降低,流动度损失加快;水泥细度提高使得掺LGCS水泥净浆流动度下降,其中掺LGAS水泥净浆初始流动度降幅较大,掺木聚羧酸系高效减水剂(LGPS)水泥净浆流动度损失较快.  相似文献   

19.
通过羟基羧酸(盐)与聚羧酸高效减水剂复掺的水泥净浆流动度和标准稠度凝结时间的试验研究,分析了羟基羧酸(盐)与聚羧酸高效减水剂复掺对水泥分散性能的影响。  相似文献   

20.
减水剂与水泥容易出现相容性不良的问题,而添加适量矿物掺合料有助于改善水泥与减水剂的相容性。该文研究了三种减水剂和粉煤灰、硅灰和矿渣粉与水泥的相容性,通过测定相应时间的水泥净浆流动度表征相容性。通过改变减水剂的种类和掺量,确定了减水剂的最佳掺量(饱和点掺量),改变矿物掺合料的掺量,确定了粉煤灰、硅灰和矿渣粉的最佳掺量。采用TOC法测试了矿物掺合料对聚羧酸减水剂吸附量的影响;采用电声法测定了水泥-聚羧酸减水剂体系浆体的zeta电位,分析了矿物掺合料影响聚羧酸减水剂与水泥相容性的机理。结果表明:两种聚羧酸系高性能减水剂与水泥和粉煤灰、硅灰和矿渣粉的相容性比萘系减水剂效果好,在一定掺量范围内,粉煤灰和矿渣粉能够明显增加水泥浆体的流动度,硅灰显著降低了水泥浆体的流动性,复掺效果较好,矿物掺合料的最佳掺量为:粉煤灰15%,硅灰5%,矿渣粉10%,粉煤灰与矿渣粉有利于增加聚羧酸减水剂的有效吸附量,降低水泥-聚羧酸减水剂浆体的zeta电位,改善水泥浆体的和易性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号