首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 193 毫秒
1.
运用FDS 软件建立高速列车火灾模型,设置4 种工况分析热释放速率及温度的变化,探究火源所在车厢位置对列车内火势发展的影响。结果表明:起火车厢位于列车前列时,车厢内发生的轰燃现象作用范围大、破坏力强,救援困难;随着起火车厢位置的后移,车内气流抑制轰燃现象的发生并有效稀释车厢内的可燃气体及热量,人员逃生可能性增大。  相似文献   

2.
雀儿山隧道为高海拔双向行车公路隧道,发生火灾后需要兼顾火灾点两侧人员的疏散,烟气控制较单向行车隧道复杂。采用FDS软件对雀儿山隧道进行火灾三维数值模拟,研究了高海拔双向行车公路隧道火灾时的烟气流动规律和能见度分布规律。研究结果表明:高海拔隧道火灾烟气流动比低海拔隧道速度快;纵坡隧道发生火灾时,若不采取任何控烟措施,烟流在火风压效应的作用下会从高洞口排出,而烟流沿下坡方向的蔓延距离仅在10 m左右,火灾烟气沿火灾点两侧蔓延极不对称;当隧道高洞口控制风速过大或横通道内控制风速过小时,易出现烟气蔓延对称性不佳或烟气窜入横通道,故二者应合理取值;当隧道高洞口施加0.5 m/s的风速、横通道施加1.0 m/s的风速时,烟气在火灾点两侧基本呈对称蔓延,且火灾两侧的能见度也基本对称;建议类似于依托工程的单洞双向行车公路隧道火灾疏散救援阶段,隧道高洞口风速控制在0.5 m/s左右、横通道内风速控制在1.0 m/s左右,以利于人员逃生。  相似文献   

3.
为了研究着火地铁列车在隧道内继续行驶的火灾特性,搭建1∶4的列车与隧道模型,通过改变风机的风速模拟地铁列车在隧道内行驶的不同速度,采用柴油油池火作为火源,分析火灾情况下车厢内温度分布。结果表明:着火列车静止时车厢内温度上升速率最快,温度峰值最大,随着风速增加,车厢内最高温度逐渐降低,但烟气蔓延速度也随之增大;较高的风速会抑制热烟气从车窗流出,导致车厢温度在火灾后期迅速升高,同时使车厢高温区域的范围增大,分析得到着火地铁列车继续行驶的安全速度在7~9 m/s之间;分析并拟合了车厢内上部温度与时间的关系式,发现车厢温度大致以幂指数的规律衰减。  相似文献   

4.
城万二级公路白芷山隧道和八台山隧道为双向行车的大纵坡公路隧道,火灾后烟流控制难。采用火灾动力学计算软件FDS对其进行了火灾三维数值模拟,分析了仅火风压作用及0.5 m/s、1 m/s和-0.5 m/s控制风速作用下的烟流扩散和能见度的分布规律。结果表明:在大纵坡隧道中,火灾后仅靠火灾效应能引起火灾烟流的流动,其流动的规律是烟流从火源点流向高洞口方向,火灾烟流能完全从高洞口排出,而烟流向火源点下坡方向的蔓延距离仅在100 m左右;当风速为0.5 m/s时,烟流在火源两侧基本呈对称状蔓延;下坡方向的隧道中的烟流也因风速较小,产生的扰动比较小,这种烟流控制是最为合理,有利于灾害情况下逃生。因此,建议将白芷山隧道和八台山隧道的火灾控制风速取为0.5 m/s左右,且该速度应为自然风速、火风压引起的风速和风机提供风速的合速度。  相似文献   

5.
综合考虑机械和温度控制两种车窗破裂模式,设置车厢中部和端部两组火灾工况,研究车窗破裂对CRH6型城际列车火灾发展规律的影响。火源功率设置为2 MW,车窗破裂温度阈值为600℃,机械控制开口时间设置为300 s。结果显示:机械开口对车厢中部火灾最大热释放速率的影响不大,但是会影响车窗破裂部位分布,从而影响车厢内温度场分布,双侧机械开口的对流冷却作用会降低车厢端部的最大火灾热释放速率;车厢中部火灾达到最大热释放速率的时间比端部火灾快15.7%;火灾发生300 s后,车窗破裂个数随时间变化曲线与热释放速率曲线非常相似。  相似文献   

6.
以往对于地铁火灾的研究,主要集中于车站火灾工况下人员的逃生以及车站火灾的扑救,而对于车厢火灾的预防与控制却少有提及。本文就地铁列车车厢火灾危险性进行分析,并结合国内外地铁建设运营经验提出列车车厢防火对策。  相似文献   

7.
建立地铁区间隧道模型,利用数值模拟对列车火灾采用侧向疏散平台疏散时,三种典型车门开启方式下的烟气蔓延规律及温度分布进行分析比较。结果表明:自然通风条件下,火灾发展前期,仅列车端侧车门打开进行侧向平台疏散时车厢端部温度更低,疏散平台处温度分层更明显,随着时间增加,火源附近人眼高度处的温度急剧下降;以大于临界风速的风速进行纵向通风时,仅列车端侧车门打开时车厢内温度从火源处向两端平稳降低,为最佳开门方式。  相似文献   

8.
为研究火灾初期时大断面道路隧道内温度及烟气流动特性,在三车道大断面试验隧道内进行了足尺火灾试验。试验考虑了0.5 MW、1 MW及5 MW三个等级的火灾规模;试验纵向风速范围为0~2 m/s。试验结果表明:在火灾发展初期,火灾规模和纵向风速是影响大断面道路隧道内温度场分布及烟气扩散的重要因素;隧道火灾产生的高温烟气趋于向拱顶扩散,故隧道横截面高温区域分布于隧道上部空间,靠近地面的空间温度则较低。火灾规模越大,隧道横截面的高温区域范围越大。大断面隧道因隧道内空间较大,有利于烟气扩散和人员逃生。然而,火灾预警的角度考虑,大断面隧道需多在关键截面上设置温度传感器和摄像头,以获得更为有效的火情信息来组织灵活的疏散逃生方案。  相似文献   

9.
城市地下快速通道存在较大的坡度,发生火灾事故时在烟流阻力和火灾通风的共同作用下会增加人员的逃生危险.本文使用CFD软件FDS,从坡度与火灾通风风速变化2方面研究了坡度对人员逃生环境的影响,并用性能化防火设计理论分析了其变化规律,以期为城市地下快速通道火灾事故通风系统设计提供指导.  相似文献   

10.
为了确定长大铁路隧道紧急出口设置的最大间距,采用对列车运行时火灾车厢中人员疏散进行了现场试验和仿真计算,并对车厢内混合人群疏散和火灾烟流扩散进行数值模拟的方法得到火灾车厢内的人员必需安全疏散时间和可用安全疏散时间,从而确定了列车发生火灾后最大运行时间为275 s。根据火灾列车运行时速为80 km/h,火灾列车可运行6 km,即长大铁路隧道紧急出口设置间距最大为6 km。  相似文献   

11.
旅客列车车厢内发生火灾时,火灾烟气的运动状况直接影响旅客的人身安全,往往造成重大的人员伤亡和巨大的财产损失。采用模型实验、数值模拟的方法对运行的旅客列车经过隧道发生火灾时车厢内烟气层高度的特征进行了研究,将旅客列车卧铺车厢处理为多个受限空间的组合,研究了车厢内烟气层高度在开口不同状况下的变化规律。模型实验与数值模拟相结合为列车车厢火灾研究提供了理论分析模型和实验研究方法,研究成果为车厢防火设计提供了重要的技术依据。  相似文献   

12.
通过数值模拟,研究了开窗角度对上、下悬窗排烟能力的影响,主要从排烟量、排烟口压力和速度、主要排烟区域等方面对上、下悬窗排烟能力进行对比分析,结果表明:下悬窗排烟效率明显高于上悬窗,相同开窗角度和火源功率下,下悬窗能比上悬窗多排出52%~61%的烟气。上悬窗相对排烟量与开窗角度成指数关系,窗体结构会阻碍烟气排出,开窗角度小于64°时,主要排烟区域为窗体两侧三角形区域;下悬窗相对排烟量与开窗角度关系不大,窗体结构对排烟有利,开窗角度小于56°时,主要排烟区域为近窗下侧水平区域,随着开窗角度增大,上、下悬窗主要排烟区域均过渡到远窗下侧竖直区域。建筑选择排烟窗时建议优先选用下悬窗,开窗角度30°即可,若选用上悬窗,则开窗角度不宜小于60°。  相似文献   

13.
为探究火灾列车制动驶向地下车站进行救援时的烟气扩散特性,采用理论分析和数值模拟的方法研究在不同控制烟气措施下,火灾列车减速至停止过程中烟气在车站轨行区及站台层的扩散规律,以及车站防灾通风系统受到的影响。结果表明:火灾列车制动进站时受移动火源与活塞风两大特性影响,烟气在上下游表现出明显的不均匀、不对称分布规律;屏蔽门虽能有效阻止烟气蔓延至站台层,但同时会增大轨行区活塞风速,增加烟气蔓延速度,不利于安全疏散;受活塞风影响,轨行区排烟效率下降了14%,轨行区各排烟阀火灾中下游排烟效率更高。  相似文献   

14.
采用实体火灾试验与 FDS 数值模拟相结合的方式,研究不同环境风场条件下,面积为 6 m 2 的前室中两个相对开启外窗的自然排烟效果,分析温度和烟密度分布。结果表明,影响排烟效果的主导因素是开窗面积,风速对前室下部温度的影响幅度大于上部温度。随着环境风速的增大,上部温度呈现缓慢线性下降的趋势,而下部温度由于烟气的沉降反而上升。根据模拟结果,提出当风速增大时,关闭迎风面窗户能改善烟气沉降现象,降低下层烟气温度,有利于人员安全疏散。  相似文献   

15.
为探究站台火灾条件下不同隧道排烟模式对地铁人员疏散的影响,以岛式地铁站为研究对象,利用Pyrosim建立火灾模型,并分析4种隧道排烟模式下的楼扶梯入口风速、烟气温度、CO体积分数和能见度的分布。结果表明:单一隧道排烟模式均无法满足安全疏散要求;疏散时间360 s内,在人眼特征高度处,车站隧道排烟模式下的人员疏散经过区域的能见度不能满足疏散要求,CO体积分数、温度、楼扶梯口风速均满足安全疏散要求;3种区间隧道排烟模式下的楼扶梯口风速均无法满足人员安全疏散要求,区间隧道推拉式反向排烟模式最不利于疏散区域烟气散热,区间隧道双拉式排烟模式排烟效果最为显著;火灾烟气的3个潜在危险因素中,相比于温度和CO体积分数,满足能见度在安全范围内的难度更高。  相似文献   

16.
Fire is a major risk in the event of subway train fire due to coincidence with direction of smoke flow and evacuation. As a part of an effort to improve the life safety in a train fire, the platform screen door (PSD) is more and more installed on the ground that PSD provides a lot of benefits to passenger’s safety. Therefore, the investigation of effect of PSD on life safety is needed. In this study, fire simulation and evacuation simulation are performed to estimate the effect of PSD and ventilation on passenger’s life safety in a subway train fire. The Fire Dynamics Simulator (FDS V406) code is used to predict smoke spread and the available safe egress time during the fire. The evacuation of a subway station due to a train fire is simulated to predict the time required for evacuation, obtaining travel speed as a function of density. The passengers in platform with PSD and ventilation system have much more available time of about 350 s than passengers in case without PSD and ventilation system in modeled subway station. The subway turnstiles (ticket gate) dramatically increase the time required for evacuation without moving toward exits and bring passenger’s life safety danger in a subway train fire.  相似文献   

17.
通过对典型住宅建筑火灾进行数值模拟和全尺寸实验,研究客厅起火时火灾发展趋势和不同门窗开启状况下卧室内的温度、能见度、CO体积分数,分析其对人员逃生的影响。结果表明,烟气的蔓延和聚集是危害人员安全的重要因素,客厅起火时,扑救火灾的最佳时间为起火后680 s内。关闭卧室门、开启卧室窗最多可以增加497 s的应急响应时间。  相似文献   

18.
为研究室外风对走廊中火灾烟气分层特性和自然排烟的影响,在相似原理的基础上开展了1/3 缩尺寸实验。通过改变火源功率、室外风速和外窗尺寸,结合对走廊火灾烟气分层特性和自然排烟效果的判断,找出使分层失效的临界室外风速以及使自然排烟失效的临界室外风速,运用量纲分析和数据拟合的方法分析无量纲火源功率和无量纲临界失效风速之间的关系。研究发现,温度分层无量纲临界失效风速与无量纲火源功率呈现良好的线性关系,温度分层临界失效风速随窗口尺寸减小而增大;自然排烟无量纲临界失效风速与无量纲火源功率呈现显著的对数函数关系,窗口尺寸相同时,火源功率越大,自然排烟临界失效风速越大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号