首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
This study assessed the impact of MIEX pre-treatment, followed by either coagulation or microfiltration (MF), on the effectiveness of pilot granular activated carbon (GAC) filters for the removal of the taste and odour compounds, 2-methylisoborneol (MIB) and geosmin, from a surface drinking water source over a 2-year period. Complete removal of MIB and geosmin was achieved by all GAC filters for the first 10 months, suggesting that the available adsorption capacity was sufficient to compensate for differences in dissolved organic carbon (DOC) entering the GAC filters.Reduction of empty bed contact time (EBCT), in all but one GAC filter, resulted in breakthrough of spiked MIB and geosmin, with initial results inconclusive regarding the impact of MIEX pre-treatment. MIB and geosmin removal increased over the ensuing 12 months until complete removal of both MIB and geosmin was again achieved in all but one GAC filter, which had been pre-chlorinated. Autoclaving and washing the GAC filters had minimal impact on geosmin removal but reduced MIB removal by 30% in all but the pre-chlorinated filter, confirming that biodegradation impacted MIB removal. The impact of biodegradation was greater than any impact on GAC adsorption arising from DOC differences due to MIEX pre-treatment. It is not clear whether, at a lower initial EBCT, MIEX pre-treatment may have impacted on the adsorption capacity of the virgin GAC.The GAC filter maintained at the longer EBCT, which was also pre-chlorinated, completely removed MIB and geosmin for the period of the study, suggesting that the greater adsorption capacity was compensating for any decrease in biological degradation.  相似文献   

2.
The kinetics of naphthalene-2-sulfonic acid (2-NSA) adsorption by granular activated carbon (GAC) were measured and the relationships between adsorption, desorption, bioavailability and biodegradation assessed. The conventional Langmuir model fitted the experimental sorption isotherm data and introduced 2-NSA degrading bacteria, established on the surface of the GAC, did not interfere with adsorption. The potential value of GAC as a microbial support in the aerobic degradation of 2-NSA by Arthrobacter globiformis and Comamonas testosteroni was investigated. Using both virgin and microbially colonised GAC, adsorption removed 2-NSA from the liquid phase up to its saturation capacity of 140 mg/g GAC within 48 h. However, between 83.2% and 93.3% of the adsorbed 2-NSA was bioavailable to both bacterial species as a source of carbon for growth. In comparison to the non-inoculated GAC, the combination of rapid adsorption and biodegradation increased the amount (by 70-93%) of 2-NSA removal from the influent phase as well as the bed-life of the GAC (from 40 to >120 d). A microbially conditioned GAC fixed-bed reactor containing 15 g GAC removed 100% 2-NSA (100 mg/l) from tannery wastewater at an empty bed contact time of 22 min for a minimum of 120 d without the need for GAC reconditioning or replacement. This suggests that small volume GAC bioreactors could be used for tannery wastewater recycling.  相似文献   

3.
This paper examines the influence of molecular oxygen on the adsorptive capacity of GAC. A new experimental procedure for determining adsorption isotherms is introduced. This procedure, denoted as “anaerobic”, differs from the currently used techniques, denoted as “aerobic”, in that oxygen is repeatedly purged from the test environment. The results show that the capacity of GAC for the retention of o-cresol can increase up to 3-fold in the presence of oxygen when compared to the anaerobic capacity. The same trend is observed for the adsorption of phenol and 3-ethylphenol. It is shown that this increase in capacity cannot be attributed to biological degradation of these adsorbates in the presence of oxygen. It is speculated that this phenomenon is due to some chemical reactions between the adsorbates and molecular oxygen that are catalyzed by the activated carbon surface and occur at a different time scale than physical adsorption. Initial portions of breakthrough curves for o-cresol are very accurately predicted using capacities depicted by the anaerobic isotherm, while the total GAC adsorptive capacity for o-cresol, as determined from breakthrough experiments, appears to agree closely with the capacity predicted from the aerobic isotherm.  相似文献   

4.
Gur-Reznik S  Katz I  Dosoretz CG 《Water research》2008,42(6-7):1595-1605
The adsorption of dissolved organic matter (DOM) on granular-activated carbon (GAC) as a pretreatment to reverse osmosis (RO) desalination of membrane bioreactor (MBR) effluents was studied in lab- and pilot-scale columns. The pattern and efficiency of DOM adsorption and fate of the hydrophobic (HPO), transphilic (TPI) and hydrophilic (HPI) fractions were characterized, as well as their impact on organic fouling of the RO membranes. Relatively low DOM adsorption capacity and low intensity of adsorption were observed in batch studies. Continuous adsorption experiments performed within a range of hydraulic velocities of 0.9-12m/h depicted permissible values within the mass transfer zone up to 1.6m/h. The breakthrough curves within this range displayed a non-adsorbable fraction of 24+/-6% and a biodegradable fraction of 49+/-12%. Interestingly, the adsorbable fraction remained almost constant ( approximately 30%) in the entire hydraulic range studied. Comparative analysis by HPO interaction chromatography showed a steady removal (63-66%) of the HPO fraction. SUVA index and Fourier Transform Infrared (FTIR) spectra indicated that DOM changes during the adsorption phase were mainly due to elution of the more HPI components. GAC pretreatment in pilot-scale columns resulted in 80-90% DOM removal from MBR effluents, which in turn stabilized membrane permeability and increased permeate quality. FTIR analysis indicated that the residual DOM present in the RO permeate, regardless of the pretreatment, was mainly of HPI character (e.g., low-molecular-weight humics linked to polysaccharides and proteins). The DOM removed by GAC pretreatment is composed mainly of HPO and biodegradable components, which constitutes the fraction primarily causing organic fouling.  相似文献   

5.
Chern JM  Chien YW 《Water research》2003,37(10):2347-2356
Three series of batch tests at 25 degrees C were performed to determine the benzoic acid and p-nitrophenol (PNP) binary adsorption isotherms onto GAC in the aqueous solutions and the experimental data were fitted to the extended Langmuir isotherm model successfully. The experimental data and the isotherm model parameters showed that the GAC used in this study had a higher affinity to PNP than benzoic acid. Three column tests were performed to determine the breakthrough curves and effluent solution pH with varying feed compositions. According to the experimental results, the weakly adsorbed BA exhibited an intermediate zone of effluent concentration higher than its feed one; the effluent solution pH could serve as a good indicator for breakthrough. The breakthrough curves with varying feed compositions could be predicted by the non-linear wave propagation theory satisfactorily. Only the adsorption isotherm models were required to construct the composition path diagram with which the breakthrough curves could be predicted.  相似文献   

6.
The adsorption capacities and rates of seven principal chlorinated organic compounds for six commercial GACs were investigated. All the adsorption isotherms were expressed by the Freundlich equation, and the isotherms for the chloroethylenes such as trans - 1,2-dichloroethylene, trichloroethylene and tetrachloroethylene could be shown by the modified Freundlich equation Q′ = k′ (C/Cs)l/n for each GAC. The magnitude of adsorption of the chlorinated organic compounds was in the order of: tetrachloroethylene > trichloroethylene > trans - 1,2-dichloroethylene > 1,1-dichloroethane > carbontetrachloride > 1.1,1-trichloroethane > chloroform. The value of k for a certain GAC could be predicted from the quantity of pores smaller than 2 nm in diameter. The adsorbed amounts were decreased by 10–20% when humic substances coexisted. The working periods of a fixed bed adsorber before regeneration were predicted by calculating breakthrough curves for various influent concentrations of trichloroethylene and tetrachloroethylene at the space velocities of 5 or 10 h−1, and it was certified that the adsorption method by GAC was feasible for removing these compounds from water.  相似文献   

7.
Quan X  Liu X  Bo L  Chen S  Zhao Y  Cui X 《Water research》2004,38(20):4484-4490
An investigation was performed for the regeneration of three granular activated carbons (GACs) exhausted with acid orange 7 (AO7). The three GACs were made from different materials, i.e. coconut shells, almond nucleus and coal. The AO7 adsorption process was carried out in a continuous-flow adsorption column. After adsorption, the AO7-saturated GAC was dried at 120 °C, then regenerated in a quartz reactor by 2450 MHz microwave (MW) irradiation at 850 W for 5 min. The efficacy of this procedure was analyzed by determining the rates and amounts of AO7 adsorbed in successive adsorption–MW regeneration cycles. Effects of this regeneration on the structural properties, surface chemistry and the AO7 adsorption capacities of GAC samples were examined. It was found that after several adsorption–MW regeneration cycles, the adsorption rates and capacities of GACs could maintain relatively high levels, even higher than those of virgin GACs, as indicated by AO7 breakthrough curves and adsorption isotherms. The improvement of GAC adsorption properties resulted from the modification of pore size distribution and surface chemistry by MW irradiation.  相似文献   

8.
Chern JM  Chien YW 《Water research》2002,36(3):647-655
The adsorption isotherm of p-nitrophenol onto granular activated carbon in 25 degrees C aqueous solution was experimentally determined by batch tests. Both the Freundlich and the Redlich-Peterson models were found to fit the adsorption isotherm data well. A series of column tests were performed to determine the breakthrough curves with varying bed depths (3-6 cm) and water flow rates (21.6-86.4 cm3/h). Explicit equations for the breakthrough curves of the fixed-bed adsorption processes with the Langmuir and the Freundlich adsorption isotherms were developed by the constant-pattern wave approach using a constant driving force model in the liquid phase. The results show that the half breakthrough time increases proportionally with increasing bed depth but decreases inverse proportionally with increasing water flow rate. The constant-pattern wave approach using the Freundlich isotherm model fits the experimental breakthrough curves quite satisfactorily. A correlation was proposed to predict the volumetric mass-transfer coefficient in the liquid phase successfully. The effects of solution temperature and pH on the adsorption isotherm were also studied and the Tóth model was found to fit the isotherm data well at varying solution temperatures and pHs.  相似文献   

9.
A granular activated carbon (GAC) adsorption simulation methodology using the observed trace organic contaminant mid-point breakthrough and the pore diffusion model is presented, validated, and used to model adsorption and concentration gradient driven desorption. Trace organic contaminant adsorption was well-simulated by this approach; however, desorption from GAC adsorbers was found to occur at lower concentrations than predicted by either pore or surface diffusion model calculations. The observed concentration profiles during desorption yielded a lower peak concentration and more elongated attenuation of contaminants after intermittent loading conditions than predicted by the models. Hindered back diffusion caused by irreversibly adsorbed dissolved organic matter on the GAC surface is hypothesized to be responsible for slowing the desorption kinetics. In addition, laboratory test results indicate a negligible impact of simulated backwashing the GAC media on trace organic contaminant breakthrough.  相似文献   

10.
Wang H  Ho L  Lewis DM  Brookes JD  Newcombe G 《Water research》2007,41(18):4262-4270
Microcystins are cyanobacterial toxins that are problematic for water authorities due to their resistance to conventional water treatment. Granular activated carbon (GAC) filtration has been shown to be effective in removing microcystin from water using both adsorption and biodegradation removal mechanisms; however, little is known regarding which removal mechanism predominates and to what extent. In this study, microcystin removal due to adsorption and biodegradation in GAC filtration were discriminated and assessed by commissioning three parallel laboratory columns, including a sterile GAC column, a conventional GAC column and a sand column. The results demonstrate that biodegradation is an efficient removal mechanism once it commences and that the rate of biodegradation was dependent upon temperature and initial bacterial concentration. Adsorption of microcystins was prevalent during the initial stages of the GAC columns and was modelled using the homogeneous surface diffusion model (HSDM). The HSDM provided evidence that an active biofilm present on the surface of the conventional GAC hindered adsorption of microcystin compared with the sterile GAC with no active biofilm. Up to 70% removal of microcystin-LR was still observed after 6 months of operation of the sterile GAC column, indicating that adsorption still played a vital role in the removal of this toxin.  相似文献   

11.
Granular activated carbon (GAC) adsorbers are often the penultimate stage of surface water treatment and provide ideal habitats for invertebrates. Proliferation of chlorine-resistant invertebrates in GAC adsorbers may lead to their efflux into distribution systems, possibly resulting in contamination of customers' tap water. GAC adsorber sampling and laboratory experiments were undertaken to determine the effects of routine backwashing on GAC adsorber populations of the chlorine-resistant snail Potamopyrgus jenkinsi at a water treatment works. GAC adsorber sampling results suggested that routine backwashing altered the spatial distribution of snails, but not their overall abundance. In small-scale glass columns 40-50% of the smallest (0.3-0.6 mm shell height) juvenile snails were removed by a GAC backwash bed expansion of 30-40%; however, bed expansions of greater than 20% were not possible in the GAC adsorbers.  相似文献   

12.
Narbaitz RM  McEwen J 《Water research》2012,46(15):4852-4860
The effectiveness of on-site thermal regeneration of field-spent granular activated carbon (GAC) from two municipal drinking water facilities was compared with bench-scale electrochemical regeneration, a novel regeneration technology. The regeneration method was evaluated using aqueous natural organic material (NOM) adsorption, iodine number analysis, and surface area analysis. In contrast to the large electrochemical regeneration efficiencies reported in the literature for GAC loaded with phenolics and other individual organic compounds, the electrochemical reactor tested was only able to regenerate 8-15% of the NOM adsorption capacity of the field spent GAC. In contrast, thermal reactivation achieved up to 103% regeneration efficiency. To more accurately assess the efficiency of regeneration processes for water treatment applications, GAC should be loaded in continuous-flow columns and not batch rectors. The iodine number analysis yielded higher efficiency values, however it did not give an accurate estimate of the regeneration efficiency. The small changes in GAC pore size distribution were consistent with the low electrochemical regeneration efficiencies. These low efficiencies appear to be related to the low reversibility of NOM adsorption and to pH-induced adsorbate desorption being the primary mechanism for this type of electrochemical regeneration system.  相似文献   

13.
在不同的预臭氧浓度条件下处理微污染原水,考察了颗粒活性灰(GAC)吸附对处理后水样水质的影响.选择化学需氧量(CODMn)、溶解性有机碳(DOC)、生物可降解溶解性有机碳(BDOC)、UV254和氨氮(NH;-N)含量及有机物分子量分布作为考察吸附效果的检测指标.结果表明,在静态吸附时间达到5天时,颗粒活性炭吸附曲线开始趋于平缓,吸附时间超过5天之后吸附趋于饱和;预臭氧含量为2.5 mg/L时,颗粒活性炭对有机物的吸附效果最佳,对CODMn、DOC、BDOC的去除率分别为53.2%,63.2%和36.2%;在不同预臭氧处理条件下,颗粒活性炭对NH;-N的吸附效果并未表现出较大的差异,吸附去除率约为5%;颗粒活性炭优先吸附水中分子量> 10kDa的有机物,其次为分子量<1 kDa的有机物.  相似文献   

14.
《Water research》1996,30(5):1065-1068
This work describes the possibility of application of a biosorption system with granulated activated carbon (GAC) for the tertiary treatment of oil-field brine. In addition to the dissolved and dispersed oil, the oil-field brine contained about 29 g/l of mineral matter, mainly NaCl. The investigation was carried out on two columns, each containing 300 g of GAC. To form the biofilm on GAC use was made of the microorganisms from the setup for the purification of refinery wastewaters by activated sludge procedure. The wastewater flow-rate through the columns was 40, 70, 95 and 130 l/d. It was found that the activated carbon in the columns was capable of removing 2.6 times more organic matter than was its adsorption capacity, and its adsorption power was not thus exhausted. The results indicate that the microorganisms present in the biofilm on activated carbon oxidize the adsorbed pollutants and thus regenerate the carbon surface. The procedure employed was very efficient—the organic matter content in the effluent did not exceed 2.5 mg/l (BOD5).  相似文献   

15.
Zhang S  Shao T  Karanfil T 《Water research》2011,45(3):1378-1386
Understanding the influence of natural organic matter (NOM) on synthetic organic contaminant (SOC) adsorption by carbon nanotubes (CNTs) is important for assessing the environmental implications of accidental CNT release and spill to natural waters, and their potential use as adsorbents in engineered systems. In this study, adsorption of two SOCs by three single-walled carbon nanotubes (SWNTs), one multi-walled carbon nanotube (MWNT), a microporous activated carbon fiber (ACF) [i.e., ACF10] and a bimodal porous granular activated carbon (GAC) [i.e., HD4000] was compared in the presence and absence of NOM. The NOM effect was found to depend strongly on the pore size distribution of carbons. Minimal NOM effect occurred on the macroporous MWNT, whereas severe NOM effects were observed on the microporous HD4000 and ACF10. Although the single-solute adsorption capacities of the SWNTs were much lower than those of HD4000, in the presence of NOM the SWNTs exhibited adsorption capacities similar to those of HD4000. Therefore, if released into natural waters, SWNTs can behave like an activated carbon, and will be able to adsorb, carry, and transfer SOCs to other systems. However, from an engineering application perspective, CNTs did not exhibit a major advantage, in terms of adsorption capacities, over the GAC and ACF. The NOM effect was also found to depend on molecular properties of SOCs. NOM competition was more severe on the adsorption of 2-phenylphenol, a nonplanar and hydrophilic SOC, than phenanthrene, a planar and hydrophobic SOC, tested in this study. In terms of surface chemistry, both adsorption affinity to SOCs and NOM effect on SOC adsorption were enhanced with increasing hydrophobicity of the SWNTs.  相似文献   

16.
Biological activation of carbon filters   总被引:6,自引:0,他引:6  
To prepare biological activated carbon (BAC), raw surface water was circulated through granular activated carbon (GAC) beds. Biological activity of carbon filters was initiated after about 6 months of filter operation and was confirmed by two methods: measurement of the amount of biomass attached to the carbon and by the fluorescein diacetate (FDA) test. The effect of carbon pre-washing on WG-12 carbon properties was also studied. For this purpose, the nitrogen adsorption isotherms at 77K and Fourier transform-infrared (FT-IR) spectra analyses were performed. Moreover, iodine number, decolorizing power and adsorption properties of carbon in relation to phenol were studied. Analysis of the results revealed that after WG-12 carbon pre-washing its BET surface increased a little, the pH value of the carbon water extract decreased from 11.0 to 9.4, decolorizing power remained at the same level, and the iodine number and phenol adsorption rate increased. In preliminary studies of the ozonation-biofiltration process, a model phenol solution with concentration of approximately 10mg/l was applied. During the ozonation process a dose of 1.64 mg O(3)/mg TOC (total organic carbon) was employed and the contact time was 5 min. Four empty bed contact times (EBCTs) in the range of 2.4-24.0 min were used in the biofiltration experiment. The effectiveness of purification was measured by the following parameters: chemical oxygen demand (COD(Mn)), TOC, phenol concentration and UV(254)-absorbance. The parameters were found to decrease with EBCT.  相似文献   

17.
Arsenate removal from water using sand--red mud columns   总被引:5,自引:0,他引:5  
This study describes experiments in which sorption filters, filled with chemically modified red mud (Bauxsol) or activated Bauxsol (AB) coated sand, are used to remove As(V) (arsenate) from water. Bauxsol-coated sand (BCS) and AB-coated sand (ABCS) are prepared by mixing Bauxsol or AB with wet sand and drying. Samples of the BCS and ABCS are also used in batch experiments to obtain isotherm data. The observed adsorption data fit the Langmuir model well, with adsorption maxima of 3.32 and 1.64 mgg(-1) at pH values of 4.5 and 7.1, respectively for BCS; and of 2.14 mgg(-1) for ABCS at a pH of 7.1. Test results show that higher arsenate adsorption capacities can be achieved for both BCS and ABCS when using the columns compared to results for batch experiments; the difference is greater for BCS. Additional batch tests, carried out for 21 days using BCS to explain the observed discrepancy, show that the equilibrium time previously used in batch experiments was too short because adsorption continued for at least 21 days and reached 87% after 21 days compared to only 35% obtained after 4h. Fixed bed column tests, used to investigate the effects of flow rate and initial arsenate concentration indicate that the process is sensitive to both parameters, with lower flow rates (longer effective residence times in the columns) and initial arsenate concentrations providing better column performance. An examination of the combined effect of potential competing anions (i.e. silicate, phosphate, sulphate and bicarbonate) on the column performance showed that the presence of these anions in tap water slightly decreases arsenate removal. Each breakthrough curve is compared to the Thomas model, and it is found that the model may be applied to estimate the arsenate sorption capacity in columns filled with BCS and ABCS. The data obtained from both batch and column studies indicate that BCS and ABCS filtration could be effectively used to remove arsenate from water, with the latter being more efficient.  相似文献   

18.
Chemical filters are used extensively in the cleanrooms of the semiconductor factories to remove airborne molecular contamination (AMC). Adsorption by activated carbons (AC) as media within the chemical filter is one of the practical methods for removal of gaseous contamination in a cleanroom. The objective of this study is to evaluate coconut shell activated carbon adsorbent-loaded nonwoven fabric media performance by determining the breakthrough curves, the linear driving force (LDF), the intra-particle diffusion characteristics, the empty bed contact time (EBCT) and the bed depth service time (BDST), the mass-transfer zone (MTZ), and pressure drop. The testing conditions were maintained at 28 ± 1 °C, and relative humidity at 40 ± 2% with face velocities of 0.076, 0.114 and 0.152 m/s for removal efficiency and capacity determination. The challenge gas concentrations of toluene were fixed at 10, 31, 42 and 70 ppm to accelerate the breakthrough of media adsorption. The concentrations were measured by a real-time photoionization detector. Results showed that breakthrough curves correlate to the challenge vapor concentration and the face velocity. Saturated adsorption ratio was increased with raised challenge gas concentration and increased face velocity significantly.  相似文献   

19.
Adsorption of 2,4-d amine, atrazine, terbacil and methyl parathion pesticides on Webster, Cecil and Eustis soils was measured at pesticide solution concentrations ranging from zero to the aqueous solubility limit of each pesticide. Measured equilibrium adsorption isotherms for nearly all soil-pesticide combinations were of nonlinear Freundlich type. The Freundlich adsorption constant (K) based on soil organic carbon was much less variable for a given pesticide among the four soils than was the K based on total soil mass. The influence of the shape of the adsorption isotherm on the movement of 2,4-d amine and atrazine through water-saturated soil columns was also examined. Pesticide effluent concentrations from soil columns were measured at two input solution concentrations (50 and 5000 μg ml−1 for 2,4-d amine; 5 and 50μg ml−1 for atrazine). In all cases, pesticide mobility was significantly greater for the higher concentrations. Thus, serious errors may be introduced by assuming a linear adsorption isotherm (i.e. pesticide mobility is invariant with input concentration) when predicting pesticide transport from waste disposal sites where high concentrations exist.  相似文献   

20.
活性炭吸附用于城市污水地下回灌技术的研究   总被引:5,自引:2,他引:5  
通过静态吸附试验比较与Crittenden计算模型分析,选择GH-16型粒状活性炭对北京高碑店污水处理厂二级出水进行深度处理试验。结果表明:GH-16型活性炭的净化效果存在阈值,约25%的DOC不能被吸附,不被吸附的主要是分子量〉3000u的有机物。对以UV254表征的有机物去除效果最好,分子量〈1000u的弱极性有机物易被微孔吸附且吸附容量,对以AOX表征的极性有机物去除效果较差。二级出水经活性  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号