首页 | 官方网站   微博 | 高级检索  
     


Removal of dissolved organic matter by granular-activated carbon adsorption as a pretreatment to reverse osmosis of membrane bioreactor effluents
Authors:Gur-Reznik Shirra  Katz Ilan  Dosoretz Carlos G
Affiliation:Faculty of Civil & Environmental Engineering and Grand Water Research Institute, Technion-Israel Institute of Technology, Haifa 32000, Israel.
Abstract:The adsorption of dissolved organic matter (DOM) on granular-activated carbon (GAC) as a pretreatment to reverse osmosis (RO) desalination of membrane bioreactor (MBR) effluents was studied in lab- and pilot-scale columns. The pattern and efficiency of DOM adsorption and fate of the hydrophobic (HPO), transphilic (TPI) and hydrophilic (HPI) fractions were characterized, as well as their impact on organic fouling of the RO membranes. Relatively low DOM adsorption capacity and low intensity of adsorption were observed in batch studies. Continuous adsorption experiments performed within a range of hydraulic velocities of 0.9-12m/h depicted permissible values within the mass transfer zone up to 1.6m/h. The breakthrough curves within this range displayed a non-adsorbable fraction of 24+/-6% and a biodegradable fraction of 49+/-12%. Interestingly, the adsorbable fraction remained almost constant ( approximately 30%) in the entire hydraulic range studied. Comparative analysis by HPO interaction chromatography showed a steady removal (63-66%) of the HPO fraction. SUVA index and Fourier Transform Infrared (FTIR) spectra indicated that DOM changes during the adsorption phase were mainly due to elution of the more HPI components. GAC pretreatment in pilot-scale columns resulted in 80-90% DOM removal from MBR effluents, which in turn stabilized membrane permeability and increased permeate quality. FTIR analysis indicated that the residual DOM present in the RO permeate, regardless of the pretreatment, was mainly of HPI character (e.g., low-molecular-weight humics linked to polysaccharides and proteins). The DOM removed by GAC pretreatment is composed mainly of HPO and biodegradable components, which constitutes the fraction primarily causing organic fouling.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号