首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 基于岩石三轴压缩应力–应变全过程渗透特性试验,结合三维声发射监测信息,研究花岗岩在不同围压条件下力学损伤演化机制及其对岩石渗透特性影响规律。本研究对常规渗透试验方法进行改进,通过在试样两端加工渗透小孔,实现岩石不同破坏形式下渗透性变化规律的测量。试验结果表明,在压缩应力作用下,花岗岩的损伤演化始于微裂隙的产生和扩展,并在岩石破坏时和峰后阶段发展迅速。该损伤演化的阶段性特征与声发射监测数据一致,进一步说明了裂隙扩展是导致花岗岩力学特性劣化的根本原因。随着微裂隙的扩展,岩石渗透性不断增强,但在峰前加载阶段渗透性变化明显滞后于损伤演化过程。该结果表明,在裂隙贯通并产生宏观破坏面之前,裂隙扩展对花岗岩渗透性影响非常有限。在低围压条件下,岩石渗透性随围压增大迅速减小;当围压增大到一定程度后,该趋势逐渐减弱。结合声发射监测数据,对不同应力条件下损伤演化与渗透特性的相互关系进行分析,并提出花岗岩渗透率与损伤和围压的相关经验公式。  相似文献   

2.
北山深部花岗岩弹塑性损伤模型研究   总被引:2,自引:1,他引:1  
 基于力学特性试验和三维声发射监测技术,研究北山花岗岩在压应力条件下的力学行为特征和损伤演化机制,并构建岩石的力学损伤模型。试验结果表明,在低围压条件下岩石主要发生的是脆性破坏;随围压增大,岩石力学行为逐渐向延性转化,表现出剪胀、塑性变形等非线性行为。结合微裂隙产生和扩展规律,对岩石在外力作用下的损伤演化过程和破坏机制进行分析,认为北山花岗岩的破坏及非线性行为是损伤和塑性变形共同作用的结果。基于这一认识,在热动力学框架下提出北山花岗岩准唯象弹塑性损伤模型。模型引入非关联的塑性流动方程,以反映岩石在压应力作用下体积变形从压缩到膨胀的转化过程。基于已有的损伤理论建立损伤演化方程,并通过在塑性屈服面中引入独立损伤变量,建立塑性和损伤发展的耦合关系。数值模拟和试验数据的对比表明,模型可以很好地描述北山花岗岩在不同应力水平下的损伤演化规律和力学行为,特别是随围压增大岩石力学行为从脆性到延性的转化过程以及岩石峰前塑性硬化和峰后应力软化等行为特征。  相似文献   

3.
为研究北山花岗岩在不同围压下的力学特征和损伤演化机制,选用MTS815 Flex Test GT电液伺服岩石力学试验系统和PCI–2声发射系统开展三轴压缩声发射试验,建立基于声发射累计振铃计数率的三轴压缩下北山花岗岩损伤演化模型,分析其损伤特性和损伤演化规律。研究结果表明:(1)北山花岗岩在常规三轴压缩条件下,力学、声发射参数均表现出明显的围压效应,适当提高初始围压,是促进原生裂隙快速闭合、阻碍新生裂隙形成发展的有效途径;(2)通过对应力–时间–声发射参数曲线分析可知,声发射振铃计数率的不同时段、能量累计数的5个阶段与岩石受压变形的5个阶段有着良好的对应关系;(3)将损伤演化过程划分为损伤形成阶段、损伤稳定增长阶段、损伤加速增长阶段和损伤破坏阶段,可合理地反应北山花岗岩在不同围压、不同破裂阶段的变形和破坏特征。  相似文献   

4.
采用MTS815 Flex Test GT岩石力学试验系统及声发射(AE)三维定位实时监测系统,开展北山深部花岗岩不同应力条件下岩石破坏的声发射特征研究。试验得到北山花岗岩的直接拉伸强度为9.53 MPa,仅为其单轴平均抗压强度的1/17。试验结果表明,在拉伸应力条件下,由于无原生微裂隙闭合过程,声发射事件出现时间较晚并集中出现于破坏阶段;峰值应力后,声发射信号的继续增加说明花岗岩并未立刻破断,而仍具有一定拉伸承载能力。在压缩应力条件下,初期加载阶段即有声发射信号出现并随加载应力增加而持续增长,反映原生裂纹闭合及新生裂纹扩展演化的过程;随着围压增加,花岗岩在峰值应力阶段延性变形特征显著增强,其内部裂隙(损伤)在该阶段渐进式发展,导致声发射事件的集聚量远高于其他阶段;同时,围压增加使北山花岗岩的非线性特征增强,特别是破坏前的显著延性变形特征与其他工程常见花岗岩特性具有明显不同。研究得到北山花岗岩在不同应力状态下的变形特征和声发射特征,为北山花岗岩在不同应力条件下损伤演化机制研究奠定基础。  相似文献   

5.
为研究陷落柱骨架砂岩在不同围压及渗透压条件下的力学性质、渗流特性和声发射基本特征,采用岩石三轴渗流实验系统及AE21C声发射监测系统,开展三轴压缩条件下渗流试验,得到砂岩变形过程全应力–应变及渗透率演化曲线,同时获得砂岩变形、渗透率及声发射信号演化规律。研究结果表明:(1)陷落柱骨架砂岩具有明显的脆性特征。渗透压相同时,砂岩应力峰值强度、弹性模量及峰值应变随着围压的增大而增大;围压对砂岩宏观破坏特征影响明显,破坏形式由多裂纹剪切破坏逐渐变为单斜面剪切破坏。(2)砂岩总体呈现低渗透特性。砂岩渗透率演化规律与三轴加载应力–应变关系具有密切的相关性。渗透率总体呈现出逐渐减小,平稳发展,迅速增加的三阶段变化特征。(3)声发射变化特征与应力–应变及渗透率曲线特征基本一致。初期阶段,振铃计数率随围压升高而减小;裂隙发育扩展阶段,声发射振铃计数率呈现密集活跃状态并逐渐增大;失稳破坏阶段,振铃计数率迅速增大后又快速回落。试验结果对于研究岩溶陷落柱的稳定性及渗透性变化规律具有重要参考价值。  相似文献   

6.
为研究细观结构非均质性对裂隙岩石宏观力学及裂纹扩展规律的影响,基于花岗岩室内力学试验及矿物组成分析利用PFC离散元数值软件建立针对2种不同类型花岗岩的矿物晶体模型(grainbasedmodel,GBM),结合单裂纹岩石单轴压缩室内试验与数值模拟结果验证GBM的合理性与可靠性。对双裂隙岩石试样进行单轴和双轴压缩数值试验,分析研究应力–应变曲线、试样破坏模式及微裂纹的发展与演化规律。结果表明:岩石试样加载过程中的新生裂纹以晶内和晶间的拉伸裂纹为主,裂纹的发展可分为初始阶段、稳定发展阶段、快速发展阶段和峰后阶段;在10MPa条件下的双轴压缩中裂纹扩展的形态与单轴压缩相比具有中心对称和边缘延展2个明显的特性;峰值应力下各类型破坏裂纹数量随双轴试验围压增加呈现不同程度的增长趋势。从应变–裂纹数量角度分析,除晶间剪切裂纹外,围压对其他类型裂纹的前期发展存在不同程度的抑制作用;非均质性系数大的双裂隙岩石加载过程中更易出现应力集中且双轴压缩时破坏形式更易从拉伸破坏向剪切破坏转换。  相似文献   

7.
 基于不同温度及应力状态下的蠕变特性试验,结合三维声发射实时监测信息,开展北山花岗岩的蠕变变形特性以及加载条件(温度、围压和应力状态)对其蠕变破坏过程的影响研究。试验结果表明,北山花岗岩的蠕变破坏包括初始蠕变阶段(瞬态蠕变)、稳定蠕变阶段和加速蠕变阶段三个阶段,在加速蠕变过程中裂纹迅速扩展和积聚是导致岩石最终破坏的主要原因。蠕变试验过程中,声发射累计数和岩石蠕变体积应变的演化趋势整体上具有一致性,但声发射信号对岩石变形破坏的敏感性更强。对试验数据综合对比分析显示,花岗岩蠕变破坏变形受围压的影响显著,围压越高,岩石蠕变破坏前所能承受的变形越大。温度和应力水平对蠕变破坏变形影响并不明显,但可以对蠕变速率造成影响,进而改变岩石的蠕变破坏时间。根据试验结果,在围压2,10,30 MPa条件下,北山花岗岩的蠕变破坏轴向应变平均值分别为0.34%,0.54%和0.71%。  相似文献   

8.
单轴压缩煤岩损伤演化及声发射特性研究   总被引:12,自引:4,他引:8  
 为建立声发射参数与岩石(煤岩)力学破坏机制的关系,更好地了解受载煤岩体的损伤演化规律,进一步揭示煤岩动力灾害演化过程及灾害时间效应产生机制,利用MTS815岩石力学测试电液伺服试验系统和8CHS PCI–2声发射检测系统,对单轴压缩煤岩的损伤演化及声发射特性进行试验研究,分析单轴压缩煤岩的声发射特性,提出基于“归一化”累积声发射振铃计数的损伤变量,建立基于声发射特性的单轴压缩煤岩损伤模型,得出煤岩的损伤演化曲线和方程。研究表明,声发射信息反映煤岩内部的损伤破坏情况,与其内部原生裂隙的压密及新裂隙的产生、扩展、贯通等演化过程密切相关,煤岩的声发射特征能较好地描述其变形和损伤演化特性。基于声发射特性的单轴压缩煤岩损伤模型是合理的。单轴压缩煤岩损伤演化过程可分为3个阶段:初始损伤阶段、损伤稳定演化和发展阶段、损伤加速发展阶段。煤岩由变形至破坏可视为一逐渐发展过程:由变形、损伤的萌生和演化,直至出现宏观裂纹,再由裂纹扩展到破坏的全过程。  相似文献   

9.
采用MTS815岩石力学试验机和声发射监测系统,研究我国高放废物地质处置库北山预选区深部花岗岩在三轴循环加、卸载条件下的损伤和扩容特性。基于试验结果,分析岩石全应力–应变曲线与累计声发射撞击数和事件数的时空分布关系,进而揭示其破裂演化机制。通过构建岩石在循环加、卸载过程中的塑性应变轨迹,获得峰后剪胀角随塑性剪切应变的变化规律,探讨岩石扩容对塑性剪切应变和围压的依赖性。研究结果表明:(1)声发射事件增量最大值出现在应变软化阶段,在该阶段的反复加载是加剧其内部损伤和裂隙宏观贯通的主导因素,残余变形阶段的裂隙行为主要表现为宏观断裂面间的摩擦、滑移,岩石扩容率趋于恒定;(2)卸载过程对于裂隙发展的影响远小于加载过程,由于裂隙的发展状态不同,在裂隙损伤应力(σcd)之前和之后卸载导致的声发射特征具有显著的差异性;(3)峰后剪胀角随塑性剪切应变的增加而减小,并随围压增加其衰减梯度不断减小,采用指数函数建立围压和塑性剪切应变为影响因素的剪胀角模型,可合理描述北山花岗岩的扩容特性。  相似文献   

10.
细砂岩破坏全过程渗透性与声发射特征试验研究   总被引:1,自引:0,他引:1  
为探讨细砂岩变形破坏过程中的渗透特性及声发射特征,采用MTS 815岩石力学试验系统及PAC PCI–2声发射测试工作站,对细砂岩进行三轴压缩条件下的渗透性和声发射特征试验,分析全过程中渗透率的变化规律、渗透率–应变关系、声发射特征及其与渗透性之间的关系。研究表明:细砂岩变形破坏过程中渗透率随应力–应变曲线呈阶段性变化,不同围压下渗透率的变化规律相似,随着围压升高,渗透率量值降低;横向应变ε3与渗透率K随轴向应变ε1的变化规律基本一致,横向变形增加的突变点与渗透率的突变点相对应,更能反映渗透性的变化;声发射特征反映了细砂岩变形破坏过程中裂纹的发展、演化过程,声发射和应力–应变、渗透率均具有很好的相关性;声发射特征参数能量率随围压升高而增大。基于声发射特征的分析能更好地揭示岩石变形破坏过程中裂纹的产生和发展状况,有助于深入认识岩石渗透性的变化机制。  相似文献   

11.
基于三轴压缩声发射试验的岩石损伤特征研究   总被引:3,自引:1,他引:2  
 利用MTS815岩石伺服试验系统和AE21C声发射监测仪,对灰岩进行三轴压缩声发射试验,利用声发射参数,分析三轴压缩条件下岩石的损伤演化特征。试验结果表明:(1) 相同试验条件下,检波器置于三轴室内时的声发射振铃计数和能量的最大值分别比置于室外时高27%和32%,表明,声发射检波器置于三轴室内能够接收到更全面、真实的声发射信号。(2) 围压使岩石压密阶段声发射活动降低,同时声发射振铃计数最大值稍滞后于岩样宏观破坏时间,说明围压提高了岩石的剪切强度和峰后承载能力。(3) 建立基于声发射累计振铃计数的岩石三轴压缩损伤演化模型,岩石的损伤演化过程可划分为初始损伤阶段、损伤稳定发展阶段、损伤加速发展阶段和损伤破坏阶段。初始损伤阶段,声发射参数较小;损伤稳定发展阶段,声发射活动明显活跃,振铃计数和能量逐渐增加;损伤加速发展阶段,声发射活动异常活跃,宏观破坏后不久声发射振铃计数和能量达到峰值;损伤破坏阶段,岩石仍具有相当的承载能力,在破坏过程中仍有声发射活动出现。  相似文献   

12.
选取典型深部矿山脆性岩石进行加卸载岩石力学试验,对复杂应力路径下脆性岩石的力学及破裂特征进行对比分析。采用声发射设备对破裂过程中声发射演化特征进行研究。研究表明,岩石的力学性质和变形特性与围压有密切的关系,围压的增加使围岩逐渐由脆性破坏向延性破坏过渡;对试件进行卸围压操作,容易造成岩石的突然破坏,同时造成了岩石强度的降低;由破裂形式素描图可知,卸载造成破坏更加剧烈,岩石表面出现大量竖向裂纹,卸载往往造成岩石的复合拉压破坏,且卸载破坏的的声发射计数率远远加载破坏。卸载破坏过程中,岩石声发射演化过程总体分为3个阶段,包括峰前平静期、活跃期及峰后平缓期,每个时期都有一个应力、应变及振铃计数临界值,需要通过大量试验及现场测试。  相似文献   

13.
煤岩强度、变形及微震特征的基础试验研究   总被引:1,自引:0,他引:1  
煤是远古地表腐植物沉积演化的一种岩类矿物。煤岩力学性质试验研究成果较为匮乏,特别是考虑强度离散性基础上的系统、全面地反映煤岩的力学性质,在不同应力状态下强度及变形特征的试验研究成果则更为少见。在进行相关煤岩力学行为方面的数值计算及理论研究时,大都采用非煤岩石的试验资料及本构模型,因而缺乏煤岩试验资料的验证和支持,并制约井下煤体破坏和矿山压力研究的科学性和合理性。煤在微细观结构和组分方面和其他岩石有较大差异,采用可靠的试验手段进行不同应力状态下煤岩强度、变形及压缩破坏的微地震特征试验研究,对于合理分析煤岩体破坏失稳、预防矿山灾害发生具有重要的理论及实际意义。采用MTS815.03电液伺服岩石试验系统进行大量煤样单轴压缩、三轴压缩、循环荷载及全应力-应变过程的渗透性试验,同时进行煤样压缩破坏过程的声发射试验及煤矿井下采场覆岩破裂失稳的微地震监测,对煤岩强度、变形及微震特征进行较系统地分析研究。取得了以下主要成果:(1)通过扫描电镜测试和力学性质试验分析,发现煤岩在力学性质上表现出明显的不连续性、各向异性和非均质性特征。煤岩原生孔隙裂隙面积率可用原生损伤变量加以描述,原生损伤变量对煤岩强度和变形有显著影响。(2)大量煤样超声波速度和相应的力学参数测试结果表明,煤样强度与其纵波由速度间呈现出置信度很高的指数函数关系,为进行强度等对比性试验前合理选择煤样提供了依据。(3)煤岩的声发射特征能较好地描述其变形和损伤演化特性。由于原生损伤发育,在围压作用下,煤岩孔隙裂隙被压密闭合,故刚度增加,弹性模量与围压之间符合二次多项式关系。根据试验结果及模型简化拟合出常规三轴压缩条件下煤岩的分段本构方程。煤岩三轴压缩破坏符合Coulomb强度准则,但由于其内部存在大量微裂隙,煤岩沿随机裂隙剪切破坏偏离θ0=45°+?/2的可能性很大。(4)同坚硬致密的岩石相比,循环荷载作用下煤岩更容易发生疲劳破坏。煤岩疲劳破坏"门槛值"与其结构和组分等有关,其变形破坏过程与其损伤累计发展过程一致。(5)煤岩渗透率-应变曲线与其相应的应力-应变曲线总体变化趋势基本一致,但表现出相对"滞后"的特点,表明渗透率的变化与其损伤演化过程密切相关;同时煤体通过其内部裂隙的渗透需要一定的时间过程。根据试验结果拟合出具体煤岩的渗透率-应变关系分段曲线方程。(6)通过声发射参数时间序列的最大Lyapunov指数计算,证明采用声发射参数描述的煤岩压缩破裂演化系统的变化趋势不是完全依赖于初值的混沌状态,而是可以预报的。通过离散小波系数分解,发现采用不同尺度上声发射参数最先出现的Lipschitz指数α负值所对应的时间作为煤岩压缩破裂预报时间,与实际情况吻合较好。(7)通过对采场覆岩破坏微震的定位分析,证实微震发展演化与采场覆岩运动过程密切相关。根据岩体失稳破坏前微震事件频数、能量和距离的1~4阶差分的变化规律,能够较准确地预报岩体破裂,这对于采用微震监测技术解决矿山岩体破坏失稳预报、预防灾害发生具有重要的指导意义。  相似文献   

14.
利用MTS 815岩石力学测试系统对膏岩进行不同围压下的三轴压缩试验,配合AE系统进行全过程声发射监测,展开了膏岩变形破坏过程的力学特性及声发射特征进行研究,并进一步探讨膏岩变形破坏过程损伤演化规律。试验结果表明:(1)膏岩是一种致密低渗岩石,气体孔隙度在1.30%~3.50%之间;(2)三轴加载条件下,膏岩的力学性质与声发射参数对围压的响应效果强烈,50 MPa围压较5 MPa围压下膏岩强度提高110.67%。高围压下声发射信号表现出明显的“滞后”效应,声发射集中分布区不断向后推移;(3)膏岩的临界围压为20 MPa。低围压下膏岩呈脆性破坏,破坏后形成宏观剪切面;临界围压下呈塑性破坏,破坏后形成共轭Y型剪切;高围压下呈延性破坏,破坏形态为鼓胀破坏;(4)膏岩损伤演化过程可分为初始损伤期、损伤快速发展阶期与损伤平稳期,能够与膏岩变形破坏阶段对应;损伤快速发展期为膏岩内部裂隙发展、贯通的主要阶段。  相似文献   

15.
《低温建筑技术》2016,(8):117-119
以往的试验试样主要为花岗岩、砂岩、煤岩,对凝灰岩的渗透性演化规律研究较少,本文针对某矿区开采区底部基岩凝灰岩进行不同围压和渗压条件下的岩石瞬时三轴力学性质试验,对凝灰岩的渗透演化规律进行了初步探讨,分析了凝灰岩试验样本渗透性在应力应变全过程的演化规律与渗透系数随围压变化规律,为岩石工程的长期稳定性分析提供参考。  相似文献   

16.
岩石在渗流作用下的损伤演化过程是当代岩土工程界最为关注的话题之一,为探究岩石在渗流压—应力耦合下的损伤演化特征,对取自某矿井工程的砂岩进行了三轴压缩渗流声发射试验。研究结果表明:渗透率随着应力的增加呈先减小后增大的整体趋势,在峰值应力附近达到最大值,峰后略有降低,围压越大,渗透率越小;声发射在渗透试验过程中呈阶段性变化,围压越大,声发射现象越滞后;利用weibull分布函数,基于声发射振铃计数计算得出,砂岩在渗流—应力作用下损伤量主要集中于应力加载阶段,渗透损伤仅为整体总损伤的10%~15%,且主要集中于屈服阶段之后,围压越大,渗透损伤量所占比重越小;砂岩的分形维数呈逐渐减小趋势,表明砂岩经历了一个从无序到有序的损伤演化过程,围压越大,对应的分形维数越小。  相似文献   

17.
脆性岩石卸围压试验与岩爆机理研究   总被引:4,自引:0,他引:4  
岩爆是高地应力区地下工程开挖卸荷产生的动力现象。按照地下工程开挖卸荷特点,开展了脆性花岗岩常规三轴、不同卸载速率条件下峰前、峰后三轴卸围压试验,研究了岩石破坏的全过程并进行了声发射特征分析,探讨了岩爆岩石的变形破坏特征和岩爆形成力学机制。试验结果表明:无论是峰前还是峰后卸围压,高地应力下花岗岩都表现脆性破坏特征,峰前卸围压时岩样表现出的脆性比峰后卸围压更为强烈;卸载速率越快,岩石脆性破坏越强,发生岩爆的可能性越大。试验研究成果对地下工程岩爆发生的机理研究和预测提供了试验依据。  相似文献   

18.
脆性岩石破坏试验研究   总被引:8,自引:1,他引:7  
 对不同加载速率控制条件下标准试样以及带中心圆孔的花岗岩岩板进行单轴压缩试验,研究岩石破坏的全过程并进行声发射特征分析。试验结果表明:岩石材料破坏过程是内部微裂纹产生和扩展过程的宏观反映;声发射信号与应力–应变曲线有良好的对应关系,根据声发射信号可以判断岩石内部裂纹扩展演化的情况;在不同的加载速率条件下对应不同的承载能力和不同的破坏形态。根据试验结果,建立弹脆性损伤本构模型,基于ABAQUS平台,采用与试验一致的控制条件对带孔岩板进行数值模拟,并与试验结果进行比较。结果表明,数值模拟真实地反映了岩石变形破坏的全过程,研究成果对研究脆性岩石的破坏以及脆性岩石的岩爆机制具有重要的指导意义。  相似文献   

19.
甘肃北山是我国高放废物深地质处置的预选场址,其花岗岩具有完整性及均匀性好、孔隙率及渗透率低等重要特点。采用气体瞬态压力脉冲法测试不同围压下北山花岗岩在三轴压缩过程中的渗透率变化特征。结合花岗岩在偏应力演化过程中微裂纹的萌生、扩展机制以及应力-应变曲线的变化特征分析,采用细观力学方法研究北山花岗岩在三轴压缩过程中渗透率的演化机制。分析结果表明:(1)北山花岗岩的初始渗透率在10-19 m2量级,对应于应力-应变曲线,其渗透率曲线随着偏应力增加总体呈现出下降段、水平段、稳定增长段以及急剧上升段的变化特征;(2)初始微裂纹的压缩闭合可导致试样的渗透率下降约1个数量级,峰前破坏时渗透率的增幅可达2~3个数量级,围压从5 MPa增大至10 MPa可导致渗透率减小1个数量级;(3)细观力学模型的计算值与试验值吻合良好,北山花岗岩试样的宏观力学响应及渗透特性与试样内部微裂纹的细观结构特征及连通性的变化密切相关,岩石渗透率变化和损伤演化具有良好的一致性,且损伤的发育可导致渗透率呈现较弱的各向异性特征。研究成果对于我国高放废物深地质处置工程中围岩的开挖扰动机制、渗透特性演化规律以及处置库系统的性能评价具有重要意义。  相似文献   

20.
为了探索岩石受力状态及水力耦合下的反馈特征,研究岩石损伤破坏过程中的力学行为及能量演化规律,以黄砂岩单、三轴及孔隙水声发射实验为基础,分析有效应力影响下的强度特征及变形特性,获取全过程的能量转化规律,基于声发射能量推导演化方程,并以此分析不同条件下黄砂岩损伤演化阶段及特征,实验结果表明:有效峰值载荷与有效残余应力与有效围压呈现正相关。随着有效围压的增大,弹性模量呈现线性增大,泊松比与水压力呈现反比特征,压密阶段越来越短,弹、塑性阶段不断延长,扩容点也在不断增大。随着有效围压的增加,主控裂纹越来越规整,线性特征越来越明显,微裂纹越来越少,破裂角度逐步增大;在水力耦合条件下,岩石主破裂更加明显,微破裂随着水压和围压的增加而逐渐递减。通过分析有效正应力和有效剪应力之间的关系,τ-σ破坏强度曲线满足库仑准则。随着有效围压的增大,峰前总能量、弹性能、耗散能、峰后释放的能量及盈余能量均呈现增大的趋势。随着孔隙水压力的增大,盈余能量越来越小,说明高水压能够降低发生动力破坏。基于能量损伤演化方程给出了损伤演化典型的5个阶段,得到了水压力与岩石脆性损伤之间的关系。研究结果对于不同受力状态围岩控制及注水防治灾害具有理论意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号