首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 312 毫秒
1.
岩石物理力学性能研究是高放废物处置库选址、设计、建造和性能评价中不可或缺的一个重要研究方面.经过全国筛选对比,已初步确定甘肃北山地区为我国高放废物处置库重点预选区.甘肃北山地区深部的主要岩石为似斑状二长花岗岩和英云闪长岩,似斑状二长花岗岩均匀性好,两种主岩均具有高密度、低孔隙率、高力学强度、低变形和高脆性的特性.通过一系列室内蠕变试验,研究在不同温度(室温,50℃,90℃)与围压(单轴,10MPa,30 MPa)条件下,北山花岗岩在不同恒定应力水平下的变形特征与声发射特性,温度和围压对岩石力学性能有着重要的影响.随着温度的升高,围压为10和30 MPa时的弹性模量逐渐升高,至70℃左右时达到最高,之后随温度的升高略微降低;裂纹损伤应力呈线性显著降低,而泊松比呈线性明显升高.稳态蠕变阶段的应变速率随着温度的升高而明显加速,在同一应力比下到达破坏的时间相应降低.随着恒载应力的降低,似斑状二长花岗岩达到破坏的时间显著增长.随着围压的增加,轴向蠕变变形量明显增加;在相同的应力比下,导致岩石断裂破坏的时间显著延长.  相似文献   

2.
采用MTS815 Flex Test GT岩石力学试验系统及声发射(AE)三维定位实时监测系统,开展北山深部花岗岩不同应力条件下岩石破坏的声发射特征研究。试验得到北山花岗岩的直接拉伸强度为9.53 MPa,仅为其单轴平均抗压强度的1/17。试验结果表明,在拉伸应力条件下,由于无原生微裂隙闭合过程,声发射事件出现时间较晚并集中出现于破坏阶段;峰值应力后,声发射信号的继续增加说明花岗岩并未立刻破断,而仍具有一定拉伸承载能力。在压缩应力条件下,初期加载阶段即有声发射信号出现并随加载应力增加而持续增长,反映原生裂纹闭合及新生裂纹扩展演化的过程;随着围压增加,花岗岩在峰值应力阶段延性变形特征显著增强,其内部裂隙(损伤)在该阶段渐进式发展,导致声发射事件的集聚量远高于其他阶段;同时,围压增加使北山花岗岩的非线性特征增强,特别是破坏前的显著延性变形特征与其他工程常见花岗岩特性具有明显不同。研究得到北山花岗岩在不同应力状态下的变形特征和声发射特征,为北山花岗岩在不同应力条件下损伤演化机制研究奠定基础。  相似文献   

3.
为研究北山花岗岩在不同围压下的力学特征和损伤演化机制,选用MTS815 Flex Test GT电液伺服岩石力学试验系统和PCI–2声发射系统开展三轴压缩声发射试验,建立基于声发射累计振铃计数率的三轴压缩下北山花岗岩损伤演化模型,分析其损伤特性和损伤演化规律。研究结果表明:(1)北山花岗岩在常规三轴压缩条件下,力学、声发射参数均表现出明显的围压效应,适当提高初始围压,是促进原生裂隙快速闭合、阻碍新生裂隙形成发展的有效途径;(2)通过对应力–时间–声发射参数曲线分析可知,声发射振铃计数率的不同时段、能量累计数的5个阶段与岩石受压变形的5个阶段有着良好的对应关系;(3)将损伤演化过程划分为损伤形成阶段、损伤稳定增长阶段、损伤加速增长阶段和损伤破坏阶段,可合理地反应北山花岗岩在不同围压、不同破裂阶段的变形和破坏特征。  相似文献   

4.
采用MTS815岩石力学试验机和声发射监测系统,研究我国高放废物地质处置库北山预选区深部花岗岩在三轴循环加、卸载条件下的损伤和扩容特性。基于试验结果,分析岩石全应力–应变曲线与累计声发射撞击数和事件数的时空分布关系,进而揭示其破裂演化机制。通过构建岩石在循环加、卸载过程中的塑性应变轨迹,获得峰后剪胀角随塑性剪切应变的变化规律,探讨岩石扩容对塑性剪切应变和围压的依赖性。研究结果表明:(1)声发射事件增量最大值出现在应变软化阶段,在该阶段的反复加载是加剧其内部损伤和裂隙宏观贯通的主导因素,残余变形阶段的裂隙行为主要表现为宏观断裂面间的摩擦、滑移,岩石扩容率趋于恒定;(2)卸载过程对于裂隙发展的影响远小于加载过程,由于裂隙的发展状态不同,在裂隙损伤应力(σcd)之前和之后卸载导致的声发射特征具有显著的差异性;(3)峰后剪胀角随塑性剪切应变的增加而减小,并随围压增加其衰减梯度不断减小,采用指数函数建立围压和塑性剪切应变为影响因素的剪胀角模型,可合理描述北山花岗岩的扩容特性。  相似文献   

5.
针对高应力岩体工程开挖后硐壁附近围岩长期变形问题,利用MTS815 Flex Text GT岩石力学试验系统和PCI–Ⅱ声发射三维监测系统,针对高应力硐室围岩,开展大理岩试件三轴蠕变试验及声发射实时监测,探讨硐室开挖后围岩在较小侧向压力下的蠕变力学特性和声发射特征。结果表明:大理岩的多级蠕变全过程应力–应变曲线具有5个阶段,岩样具有脆性破坏特征,横向变形较轴向变形具有更显著的蠕变特征;声发射特征表现出明显的应力响应和时效特征,且与典型蠕变3个阶段相匹配,在减速和稳态蠕变阶段,声发射振铃计数率和能量率呈线性增长趋势,加速阶段声发射振铃计数率和能量率呈现指数型增长,且声发射变化对应的时间点提前于应变加速点,可作为大理岩蠕变破坏的前兆特征;基于AF和RA值表征的大理岩内部微裂纹发展特征,大理岩蠕变破坏是张拉破坏和剪切破坏共同作用的结果。  相似文献   

6.
基于岩石三轴压缩应力–应变全过程渗透特性试验,结合三维声发射监测信息,研究花岗岩在不同围压条件下力学损伤演化机制及其对岩石渗透特性影响规律。本研究对常规渗透试验方法进行改进,通过在试样两端加工渗透小孔,实现岩石不同破坏形式下渗透性变化规律的测量。试验结果表明,在压缩应力作用下,花岗岩的损伤演化始于微裂隙的产生和扩展,并在岩石破坏时和峰后阶段发展迅速。该损伤演化的阶段性特征与声发射监测数据一致,进一步说明了裂隙扩展是导致花岗岩力学特性劣化的根本原因。随着微裂隙的扩展,岩石渗透性不断增强,但在峰前加载阶段渗透性变化明显滞后于损伤演化过程。该结果表明,在裂隙贯通并产生宏观破坏面之前,裂隙扩展对花岗岩渗透性影响非常有限。在低围压条件下,岩石渗透性随围压增大迅速减小;当围压增大到一定程度后,该趋势逐渐减弱。结合声发射监测数据,对不同应力条件下损伤演化与渗透特性的相互关系进行分析,并提出花岗岩渗透率与损伤和围压的相关经验公式。  相似文献   

7.
 基于岩石三轴压缩应力–应变全过程渗透特性试验,结合三维声发射监测信息,研究花岗岩在不同围压条件下力学损伤演化机制及其对岩石渗透特性影响规律。本研究对常规渗透试验方法进行改进,通过在试样两端加工渗透小孔,实现岩石不同破坏形式下渗透性变化规律的测量。试验结果表明,在压缩应力作用下,花岗岩的损伤演化始于微裂隙的产生和扩展,并在岩石破坏时和峰后阶段发展迅速。该损伤演化的阶段性特征与声发射监测数据一致,进一步说明了裂隙扩展是导致花岗岩力学特性劣化的根本原因。随着微裂隙的扩展,岩石渗透性不断增强,但在峰前加载阶段渗透性变化明显滞后于损伤演化过程。该结果表明,在裂隙贯通并产生宏观破坏面之前,裂隙扩展对花岗岩渗透性影响非常有限。在低围压条件下,岩石渗透性随围压增大迅速减小;当围压增大到一定程度后,该趋势逐渐减弱。结合声发射监测数据,对不同应力条件下损伤演化与渗透特性的相互关系进行分析,并提出花岗岩渗透率与损伤和围压的相关经验公式。  相似文献   

8.
研究3种试验条件(300℃轴压94 MPa围压75 MPa,400℃轴压125 MPa围压100 MPa,500℃轴压175 MPa围压125 MPa)下花岗岩体(200 mm×400 mm)的蠕变声发射规律。研究结果表明:(1)花岗岩300℃轴压94 MPa围压75 MPa蠕变试验,整个过程经历瞬态蠕变和稳态蠕变2个阶段,蠕变第一阶段声发射信号强于蠕变第二阶段声发射信号,稳态蠕变阶段声发射活动较弱,声发射频度稳定,强度逐渐降低;400℃轴压125 MPa围压100 MPa花岗岩蠕变试验只经历稳态蠕变阶段,蠕变声发射规律与300℃稳态蠕变阶段相似;500℃轴压175 MPa围压125MPa采集到的声发射信号微弱,无法说明蠕变过程中声发射规律。(2)高温高压蠕变试验中,随着温度升高,花岗岩内部发生不同程度塑性变形和局部塑性破坏,蠕变声发射信号减弱。  相似文献   

9.
高围压下岩石破坏和摩擦滑动过程中的声发射性活动性   总被引:8,自引:1,他引:7  
在600MPa范围内,实验测定了居庸关花岗岩变形破坏和摩擦滑动过程中的声发射活动性。在有围压的情况下,岩石变形破坏过程中缺少在单轴压缩下经常出现的第一次声发射活动高峰;随着围压的增加,声发射活动性由致密型向致密不稳定型过渡;开始出现声发射所对应的应力—应变条件相对于破裂点而言有随围压增加而“提前”的趋势.采用归一化的处理以后,发现破裂过程中声发射累计数增长曲线随着围压增加而曲率减小。指数函数拟合结果表明:随围压增加指数系数减小,并且阶段间的差别逐渐消失。摩擦滑动的应力积累阶段的声发射活动性也遵循指数规律上升,但指数系数较变形破坏过程为小.稳定滑动过程本身的声发射累计数随应变量的增大只是线性地增加.  相似文献   

10.
软岩三轴蠕变特性的试验研究   总被引:6,自引:6,他引:6  
采用重力加载式三轴流变仪,在低围压条件下对龙口矿区含油泥岩的蠕变特性进行三轴蠕变压缩试验研究,重点观察和分析蠕变条件下围压对岩石蠕变参数的影响,同时对其他时效变形特点进行分析.试验结果表明,含油泥岩存在一个起始蠕变应力阈值,该阈值随围压的加大呈线性增加;其蠕变破坏应力也大致与围压成比例关系,但两者随围压的增长率差异很大.含油泥岩的蠕变只有2个阶段:当轴向应力小于蠕变破坏应力时,蠕变呈衰减状态;当轴向应力大于蠕变破坏应力时蠕变转化为加速状态,但试验中没有观测到等速蠕变阶段.含油泥岩黏滞系数较小,显示出其流动变形大的特点.虽然黏滞系数近似为围压的线性函数,但增长率远小于前两者,表明低围压对软岩的流动变形影响较弱,该结果可为蠕变型软岩巷道的稳定性控制提供一定的试验依据.  相似文献   

11.
高温三维应力下花岗岩三维蠕变的模型研究   总被引:3,自引:1,他引:2  
 采用中国矿业大学的“20 MN高温高压岩体三轴试验机”进行高温三维应力下大尺寸f 200 mm×400 mm鲁灰花岗岩蠕变特性的试验研究,温度最高达600 ℃,轴向应力最高达175 MPa。研究发现:(1) 三维应力条件下鲁灰花岗岩300 ℃,500 ℃的轴向蠕变和300 ℃,500 ℃,600 ℃的体积蠕变变形均可划分为:瞬态蠕变阶段、稳态蠕变阶段和加速蠕变阶段。(2) 高温三维应力条件下,鲁灰花岗岩试样的体积、长度和半径随蠕变时间的增加出现增长,这是因为热破裂引起岩石的内部产生了大量的微裂纹,同时还发现试样的侧向比轴向变形增长的速度变形快。(3) 以试验结果为依据将静水应力引发体积蠕变,差应力引发轴向蠕变作为三维应力状态下黏弹塑性问题的假设,导出三维应力条件下Burgers体模型体积蠕变的本构方程。(4) 通过对蠕变曲线的分析发现,可以用Burgers体模型来模拟鲁灰花岗岩300 ℃,500 ℃的轴向蠕变和300 ℃,500 ℃,600 ℃的体积蠕变,并且求出模型的参数。  相似文献   

12.
北山深部花岗岩弹塑性损伤模型研究   总被引:2,自引:1,他引:1  
 基于力学特性试验和三维声发射监测技术,研究北山花岗岩在压应力条件下的力学行为特征和损伤演化机制,并构建岩石的力学损伤模型。试验结果表明,在低围压条件下岩石主要发生的是脆性破坏;随围压增大,岩石力学行为逐渐向延性转化,表现出剪胀、塑性变形等非线性行为。结合微裂隙产生和扩展规律,对岩石在外力作用下的损伤演化过程和破坏机制进行分析,认为北山花岗岩的破坏及非线性行为是损伤和塑性变形共同作用的结果。基于这一认识,在热动力学框架下提出北山花岗岩准唯象弹塑性损伤模型。模型引入非关联的塑性流动方程,以反映岩石在压应力作用下体积变形从压缩到膨胀的转化过程。基于已有的损伤理论建立损伤演化方程,并通过在塑性屈服面中引入独立损伤变量,建立塑性和损伤发展的耦合关系。数值模拟和试验数据的对比表明,模型可以很好地描述北山花岗岩在不同应力水平下的损伤演化规律和力学行为,特别是随围压增大岩石力学行为从脆性到延性的转化过程以及岩石峰前塑性硬化和峰后应力软化等行为特征。  相似文献   

13.
低渗透岩石三轴压缩过程中的渗透性研究   总被引:5,自引:2,他引:3  
 采用岩石全自动三轴伺服仪,对低渗透花岗岩进行考虑渗透水压作用的三轴渗流–应力耦合试验。基于试验结果,研究花岗岩在不同围压和渗压下的渗透特性,分析岩石应力、应变变化过程中渗透率随围压、渗压和体积应变的变化规律。试验结果表明:岩石的应力–应变关系具有典型的脆性特征,渗压相同围压不同时,岩石强度随围压增大而增加;围压相同渗压不同时,较低的渗压对低渗透岩石强度影响不明显。岩样体积应变经过压密和扩展2个阶段,最大体积压缩应变随着围压的增加而增加,而岩样渗透率最小值并未出现在最大压密处,而是出现在体积应变拐点前,约在最大压密体积应变的95%处,并给出渗透率与体积应变的关系式。  相似文献   

14.
为深入研究花岗岩在卸荷路径作用下各变形阶段的应力特征值、变形参数和破裂前兆信息,选取甘肃北山花岗岩为研究对象,在不同初始围压下进行三轴卸荷试验。试验结果表明:(1) 随初始围压的增大,岩石特征应力值逐渐增大,受力模式由横向张拉作用转为张剪联合作用;(2) 弹性模量受初始围压大小的影响不大,泊松比随围压卸载而增大,弹性模量随围压的卸载而降低,均不是连续介质意义上的变形特征参数;(3) 在路径1作用下,因岩石侧向扩容剧烈,从而粘聚力较小;而路径2作用下岩石受张性破裂影响,导致破裂面粗糙,因此内摩擦角较高;(4)能量累计数随时间由缓慢增长转为加速增长的时间转折点可作为岩石在卸荷作用下出现宏观裂隙、导致完全破坏的监测参量。  相似文献   

15.
高温作用下花岗岩三轴蠕变特征的实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
采用中国矿业大学的"20MN高温高压岩体三轴试验机",对Φ200mm×400mm大尺寸花岗岩试件在高温下的蠕变特征进行了试验研究。介绍了三维应力作用下花岗岩在高温条件下的蠕变试验方法和结果,结合理论与试验结果分析,发现了花岗岩在300℃时轴压94MPa围压75MPa时花岗岩经历蠕变的第一阶段和第二阶段,蠕变变形逐渐停滞,呈现明显的稳态蠕变的特征;在400℃,轴压125MPa围压100MPa时,呈现明显的非稳态蠕变特征。试验还揭示了花岗岩的蠕变性随温度和应力的升高而增强,蠕变性态转变的温度门槛值为300℃~400℃。试验结果对核废料的深埋处置长久安全性,地热能的长期稳定开发都有重要的指导意义。  相似文献   

16.
砂岩卸围压变形过程中渗透特性与声发射试验研究   总被引:3,自引:1,他引:2  
 利用岩石伺服试验系统,对江西红砂岩岩样进行气体渗透三轴试验及声发射监测,研究在常规加载、峰前卸围压和峰后卸围压3种应力路径下,岩样变形破坏过程中的渗透规律和声发射特征。试验结果表明:(1) 随着有效围压的增大,岩石岩样的应力峰值逐渐增大,岩样的应力峰值对有效围压很敏感。(2) 常规加载时,渗透率在岩石屈服前呈现略微下降的趋势,屈服后迅速增长,峰后应变软化阶段有小幅回落;峰前和峰后卸围压时,在卸载之前渗透规律与常规加载时相同,卸载后渗透率均呈急剧增长的趋势,增幅也较大,其中峰前卸围压后渗透率增幅最大。(3) 在相同加载方式下,围压的增大不影响渗透率曲线的发展趋势,只影响渗透率在各阶段量值的大小。(4) 常规加载时,岩石声发射活动在屈服前比较平静,屈服后声发射活动非常活跃,峰后应变软化阶段声发射活动再次趋于平静;峰前卸围压不久后,声发射活动异常活跃、密集,能量数相对值较大并有明显峰值;峰后卸围压过程与常规加载过程中声发射规律相似。(5) 岩样的破坏过程中,随围压增大,脆性减弱、延性增强,在同一围压水平下,峰前卸围压破碎程度最高,脆性最强。(6) 岩石扩容点与渗透率最小值所对应的轴向应变值十分接近,体应变和渗透率随轴向应变的变化趋势对应较好,声发射活动的密集阶段均发生在体积膨胀之后,渗透率、声发射、应力及(体)应变之间存在一定对应关系。  相似文献   

17.
 岩石材料在受载情况下,发生变形和内部破裂,储存的部分能量以应力波的形式释放出来,产生声发射现象。采用三轴压缩试验和声发射试验,研究玲珑金矿二长花岗岩声发射特征与力学参数之间的关系。结果表明:(1) 岩石试样在三轴试验条件下,其声发射特征基本符合岩石加载破坏过程中的4个阶段,其中压密阶段在围压对岩石材料的压实作用下没有明显体现出来。(2) 通过分析围压对岩石记忆效应的影响得出,在相对低围压水平时,Kaiser效应显著性会随轴向应力水平提高而降低,Felicity效应显著增大;随着围压水平的提高,Kaiser效应显著增大,Felicity效应显著降低。(3) 在声发射法测量地应力过程中采用三轴试验更为适合,三轴试验可消除应力环境不同和高应力水平Kaiser效应模糊所引起的误差,使测量值更接近实际岩体所处的应力状态。(4) 随着围压水平的提高,岩石的抗压强度随之提高,岩石破裂前夕声发射特征参数呈现突发性特征,表现为突然激发出高能量振铃计数率、能量累积迅猛增加,并且伴随没有峰后曲线的岩石突然破裂现象。  相似文献   

18.
 节理岩体的力学特性与其赋存的应力状态密切相关,已有的岩体表征单元体确定方法均没有考虑围压对表征单元体尺寸的影响。以某公路隧道为工程背景,采用三维离散元数值方法,对此问题进行研究。基于现场大量节理量测,统计出研究区岩体的优势节理组,建立岩体结构模型及三维离散元数值模型,模拟岩体的压缩试验,研究不同围压条件下表征单元体尺寸及岩体变形和力学特性的变化规律。结果表明:当围压小于20 MPa时,表征单元体尺寸随围压增加呈正相关增大;当围压大于20 MPa时,表征单元体尺寸不受围压影响,保持不变。当围压小于60 MPa时,岩体承载力随围压增加呈正相关增大;当围压大于60 MPa时,岩体承载力不随围压增加而变化。岩体的轴向应变、横向应变和体积应变随围压的变化规律也表现出明显的围压效应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号