首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 592 毫秒
1.
王冰玲 《城市住宅》2018,(1):102-105,108
基坑开挖会对邻近既有隧道及土体变形特性产生重要影响。基于Midas GTS420研究基坑开挖对周边土体、支护结构及邻近双向水平隧道的变形特性影响。数值模拟结果表明:周边土体沉降主要发生在开挖基坑长边中部及拐角部位,最大沉降位置位于围护结构外约1/3基坑宽度处;围护结构的最大水平位移位于基坑长短边拐角处,当基坑开挖深度接近于临界深度时,水平位移迅速增大;隧道的横向位移存在一个临界埋置深度,其深度约9m。  相似文献   

2.
通过翻阅大量的文献,采集、整理、研究大量有关坑中坑式基坑工程的变形数据,对内、外坑开挖深度、间距,围护结构侧向变形值等有关参数之间关系进行分析,结果表明:当开挖总深度不变时,外坑围护结构最大侧向变形随内外坑间距的增大而减小,内坑围护结构最大侧向变形随内外坑间距的增大而增大;内墙插入比对外坑围护结构最大侧向变形量的影响不大,但内坑围护结构最大侧向变形量随内墙插入比的增大而减小。外坑围护结构最大侧向变形量随外墙插入比的增加有减小的趋势。在忽略内坑影响的情况下,外坑开挖深度与地表最大沉降量之间的关系类似,考虑内坑影响时周围地表沉降量相比单级基坑更大,同时内坑的开挖深度与地表最大沉降量不再符合单基坑的线性规律。  相似文献   

3.
陈涛  范鹏程  翟超  黄亚德  李更召 《矿产勘查》2018,9(6):1299-1306
以天津市某深基坑工程为背景,对现场监测数据进行整理、分析,并采用PLAXIS 3D有限元数值模拟分析法建立三维空间实体模型,对基坑开挖施工过程中地连墙深层水平位移以及周边地表沉降进行数值模拟分析,将监测数据与模拟计算结果进行对比分析,研究结果表明,数值模拟结果与现场实测数据变化趋势基本一致,数值较接近,地连墙深层水平位移相差3 mm以内,周边地表沉降相差4 mm以内;随着开挖深度的增加,地连墙深层水平位移逐渐增大,且最大位移点逐渐下移,墙体位移变化呈中间大、两端小的"鼓肚"形状;随着土方开挖的进行,周边地表沉降逐渐增大,最大沉降值点逐渐向基坑外侧延伸,在第四步土方开挖完毕及基坑顶部施工完成后,最大值点均出现在距基坑边11 m处;实测值与计算值均在规范限制以内,符合基坑变形要求。  相似文献   

4.
依托南京地铁1号线某基坑工程,实测分析了围护结构深层土体水平位移、钢支撑轴力、周边地表沉降等随土方开挖、支撑设置等因素变化的规律。实测结果分析表明,围护墙最大位移位置随着开挖的进行逐渐下移,但基本在基坑开挖面以上,位于基坑深度约3/4处;基坑开挖深度较浅时,支撑轴力基本维持不变或变化缓慢,随着土方开挖,相应位置处钢支撑轴力也随之增大,垫层浇筑完成后,支撑轴力基本趋于平稳;周边地表沉降具有较明显的沉降快速发展阶段、缓慢下沉阶段和逐渐稳定3个阶段,在基坑垫层尤其是底板浇筑后,周边地表沉降趋于稳定,其变化规律和围护结构水平位移、支撑轴力变化趋势相同。  相似文献   

5.
黄磊 《建筑施工》2021,43(8):1640-1642
基于上海软土地区某深基坑工程地下连续墙施工完成后的封闭性试验,分析围护结构及首道撑施工完成、基坑开挖前的承压水降水试验引起的围护结构变形实测数据,通过理论计算分析由此引起的坑外地面沉降.得到的主要结论有:复杂敏感环境基坑工程开挖前封闭性试验的环境影响不容忽视,封闭性试验引起的围护结构最大侧向位移达开挖深度的0.12%.邻地铁侧设置小坑可以有效减小承压水降压引起的基坑外围地下连续墙变形及坑外地表沉降.小基坑外侧地下连续墙最大水平位移约为大基坑地下连续墙最大水平位移的30%.小基坑地下连续墙外侧地表最大沉降约为大基坑地下连续墙外最大地表沉降的35%.  相似文献   

6.
为了研究深基坑变形与受力特点,采用现场监测的方法对杭州紫之隧道深基坑进行实测,并探讨了基坑围护结构变形、支撑轴力、地表沉降、建筑物沉降及坑外水位的变化规律。实测分析得出:当基坑的开挖深度增大时,地下连续墙的变形由原先向坑内的前倾型曲线慢慢变成折线型;钢筋混凝土和钢支撑轴力的实测值小于报警值,说明当基坑开挖深度增加时,地下连续墙的结构设计比较保守,而提高轴力的监测频率是加强基坑安全施工的可行手段;地表沉降大小与墙体深层水平位移有较大关系;建筑物的沉降值随着基坑开挖深度的增加而增大,沉降值随时间增长呈线性分布;随着基坑开挖深度的增大,地下水位也相应下降。  相似文献   

7.
结合天津海河隧道基坑开挖工程,采用工程实测及数值计算相结合的方法,研究高水位软土基坑在开挖过程中坑外地层沉降规律。基坑开挖对周边地面沉降存在一定的影响范围,一般距离围护结构约2倍基坑开挖深度范围属于主要影响区域;地面最大沉降点位于距离围护结构约0.6倍的基坑开挖深度;随着开挖的进行,地面沉降最大值的位置逐渐向远离坑外方向发展,其沉降最大值发生的位置与围护结构最大水平位移位置的比值为0.8~1.0。  相似文献   

8.
以大连后盐站富水岩溶地层深基坑工程为研究对象,编制后盐站一期主体基坑工程变形监测方案。以工程实际监测数据为依据,通过对比分析不同监测项目监测点位移变形趋势及变化规律,得出:深基坑开挖对坑外地表沉降的影响在横向上表现为最大沉降点随基坑开挖由基坑边缘逐渐向外移动到一定距离;施工后期,支护桩的水平位移呈现出随开挖深度先增大后减小的“弓形”变化趋势;基坑开挖会对邻近桥墩产生一定的扰动。  相似文献   

9.
孙海员 《建筑技术》2023,(11):1284-1287
多个基坑近邻施工越来越常见,彼此间不同施工工况对变形影响较大。以武汉市地铁青菱站近邻基坑群工程为例,针对不同开挖顺序对基坑群变形影响问题,采用数值模拟的方法对不同基坑围护结构深层位移和基坑周边土体沉降的变形特性进行了分析。研究结果表明:在基坑群开挖过程中,基坑坑间土体沉降叠加效应受坑间距影响较大;不同开挖顺序对基坑外边侧围护结构变形和周边土体沉降影响不大,但对基坑内边侧围护结构变形有一定影响。3个基坑同时开挖基坑内边侧围护结构位移量最大,基坑依次顺序开挖位移量最小,先开挖2个基坑再开挖另一个基坑位移量位于二者之间。相关结论可为基坑群开挖顺序的设计提供参考。  相似文献   

10.
结合基坑工程施工,运用有限元分析方法,对两端向中间开挖与中间向两端开挖两种开挖顺序下,地连墙水平位移、周边地表沉降及地连墙弯矩的计算结果进行了对比分析。分析结果表明:两种开挖顺序下,基坑周边地表沉降最大值出现在基坑外侧10~15 m范围,且开挖深度越大,基坑外土体沉降影响范围越大,影响距离超过50 m。墙体水平位移的最大值则在基坑深度中间位置,且其呈现出两端小、中间大的抛物线形分布。计算结果显示两种开挖顺序下基坑位移量相差很小,即两种开挖顺序对周边环境的影响程度基本相同;而两种顺序开挖产生的墙体弯矩值相差较大,对围护结构强度有重要影响。  相似文献   

11.
以某城市地铁车站深基坑开挖支护施工为工程背景,针对城市复杂环境下的深基坑开挖和支护的施工过程开展了数值仿真分析。有限元分析结果表明:随着基坑开挖深度和范围的增加,引起周围地层发生向基坑内的变形,其水平位移随着其距基坑边距离的增大而逐渐减小,基坑开挖对周围地层水平位移的影响范围约30 m;而基坑开挖引起的周围土体地表沉降量,则呈现先增大后减小的趋势,并且在距基坑边20 m范围内的地表沉降量较大;分析基坑开挖过程中支护结构的变形规律,可以发现随着基坑开挖深度增加,支护结构两侧向基坑中间部分鼓出;基坑支撑轴力的最大值发生在拆除第3道支撑时,此时整个支撑体系处于最不利工况,应引起重视。  相似文献   

12.
奚家米  陈让清 《建筑科学》2020,36(3):143-150
为了解软土超深大基坑分区对称开挖引起围护结构变形及地表沉降特性,结合深厚软粘土地区某超深大基坑进行工程信息化监测及结果分析。结果分析表明:基坑在开挖过程中地表沉降分布并非始终保持单一状态,而是随着基坑开挖深度的增加呈现动态变化,最终过渡至"凹槽"形;基坑分区对称开挖对远端围护结构顶部变形及地表沉降基本不产生影响,对邻侧地表沉降的影响大于其对围护结构顶部变形的影响,对后挖区(B区)影响最大;"坑角效应"随基坑开挖深度的增加表现越发明显,并且影响范围也逐步扩大;受邻近地铁站代建地下室围护墙影响,基坑分区对称开挖对北侧A-1区和A-2区围护结构顶部变形影响较小,最大沉降为-1. 47mm(Q40),最大水平位移为0. 5mm(Q55);基坑左右两侧和南侧中部及靠近中部附近,属于抵抗变形薄弱区域,应当加强其围护结构强度。合理利用"坑角效应",可适当减弱坑角附近围护结构强度。  相似文献   

13.
翟文琦  吕明喜 《砖瓦》2024,(2):132-134
为解决复杂环境下大面积淤泥质软土深基坑工程的支护变形问题,以山东省东营市某高层住宅小区深基坑工程为研究对象,运用现场实测的手段,研究基坑不同开挖过程中地表的沉降变形、围护结构侧向变形和混凝土支撑的轴力变化过程。结果表明,不同开挖阶段,地表沉降均随着距离的增加呈现“勺”状,地表沉降峰值随着基坑工程开挖深度的增加而逐步向远离基坑的方向偏移,施工至基坑底部时地表最大沉降为9.8mm;不同开挖深度时,围护桩水平向变形均呈现“弓”字形,其水平向位移峰值出现在基坑开挖面附近,并随着基坑开挖深度的增加而增加,施工至基坑底部时地表最大沉降为10.2mm;在基坑开挖较浅时,基坑围护结构的轴力主要由第一道钢筋混凝土支撑承受,随后施作了第二道钢筋混凝土支撑,第二道支撑的轴力逐步增大并趋于稳定,而第一道支撑的轴力则逐步减小。  相似文献   

14.
为研究软土区基坑开挖对既有建筑及管线的变化规律,文中基于有限元软件Midas GTS NX,模拟基坑开挖过程,研究结果表明,随着基坑开挖深度的增加,支护结构的水平位移逐渐增大;临近坑边的管线其水平位移量会随管线离坑边距离的增加而减少;临近坑边的建筑其角点的沉降量,随基坑开挖深度增加而增加,随坑边距的增加而减小;基坑开挖对已建建筑沉降的敏感性与基坑和建筑的平面布置有关系。这些变化规律对以后软土区基坑开挖提供了宝贵的经验。  相似文献   

15.
以上海五坊园三期基坑工程为依托,开展了两组不同开挖分区方式的基坑开挖离心模型试验,通过测定不同开挖分区和支护方式对应的基坑围护结构变形规律及周边地层变形规律,探讨了开挖分区和支护方式对基坑开挖扰动效应的影响。试验结果表明:不同开挖分区工况下围护结构变形均随开挖深度的增大而增加,墙后地表沉降呈现勺子形分布并随距离的增加而减小;开挖分区工况对围护墙的内力变形影响较大,分区开挖有效控制了围护结构以及坑外土层的变形,后期开挖基坑对先期开挖完成基坑的地下连续墙弯矩和变形影响较小。先期较大面积开挖产生的弯矩和侧向位移均大于开挖面积较小工况的值,且较小分区面积对于远处地表沉降约束较好。  相似文献   

16.
为了深入研究基坑底板施工过程中坑边不均衡堆载对基坑围护结构的内力和位移及周边环境的影响,运用岩土有限元软件MIDAS/GTS模拟了不均衡堆载下深基坑开挖过程,从而得到了不均衡堆载条件下基坑围护结构内力、变形及地表沉降的分布规律。计算和分析结果表明:坑边不均衡堆载对基坑围护结构的内力和位移及地表沉降产生了较大影响,尤其是围护结构水平位移及地表沉降,这使得基坑的稳定性处于不利的状态。  相似文献   

17.
方建华  陈伟  黄宝森  邹雄  徐鹏 《土工基础》2023,(6):908-914+949
针对绍兴某地铁淤泥质软土深基坑工程地质条件差、周边环境复杂的特点,构建了基坑信息化监测系统,通过分析采集到的基坑围护墙体水平位移、支撑轴力、地表沉降等监测数据,研究深基坑围护结构和周边地表的变形性状。结果表明:(1)淤泥质软土深基坑围护墙变形大,尤其在最后一层土方开挖至底板施工完成期间,变形尤为显著,基坑端头井良好的空间效应有效控制变形;(2)在基坑偏压和坑边荷载的共同作用下,淤泥质软土基坑不同部位围护墙变形特征差异明显。同时随基坑开挖深度的不断增大,第一道钢筋混凝土支撑所受压力不增反减,水平和竖直面上各道支撑轴力也表现出明显的联动性;(3)坑边地表沉降分布近似符合基坑开挖工程的Peck地表沉降规律,最大沉降点距基坑围护结构边的距离xmax取值范围为8~13 m(0.5h~0.9h),计算得到Peck公式中曲线拐点σ值为4 m~7 m。  相似文献   

18.
介绍了黄河冲积平原地区某开挖范围为271 m×192 m,开挖深度为18.7~19.5 m,采用土钉、预应力锚索加钻孔灌注桩作为支护结构的超大型深基坑开挖现场监测实例,研究了超大型深基坑开挖过程中围护结构变形、地表沉降、锚索轴力的变化规律。研究表明:围护桩水平位移随开挖深度的增加而增大,围护桩最大水平位移随开挖深度的增加逐渐向深部发展。基坑外纵向地表沉降大致呈马鞍形分布,地表沉降最大值位于基坑中部附近,基坑角部沉降约为基坑中部沉降的33.9%,纵向沉降影响范围大于基坑开挖范围。基坑分层开挖过程中锚索轴力随开挖深度的变化而动态调整,下层锚索施工完成后,上层锚索的锚固力先减小后缓慢增长并最终趋于稳定。锚索钻孔和高压注浆施工过程中对周围已有锚索的扰动影响不容忽视。  相似文献   

19.
深基坑开挖段被动区加固的位移控制效果分析   总被引:1,自引:0,他引:1  
在深基坑施工过程中,为有效控制基坑的变形,常在坑底进行被动区加固,但对于开挖段的被动区加固研究则很少。针对开挖段被动区加固效果进行深入分析,结果表明:基坑开挖段被动区加固存在最优加固高度,当加固高度小于该高度时,随着被动区加固宽度与高度的增大,围护结构的水平位移与坑外地表沉降均有明显的减小,但当加固高度达到并大于该高度时,围护结构水平位移最大值及坑外地表沉降最大值则基本趋于稳定,但可减小围护结构的顶部位移,这对于基坑周边环境的保护具有重要的意义。  相似文献   

20.
以北京地铁九号线白石桥南站明挖段为工程背景,对基坑开挖过程中围护结构水平位移和坑边地表沉降的变形规律进行了模拟,将围护桩嵌固深度、桩径的变化对基坑稳定性的影响进行了分析,最后将模拟结果与实测数据进行了对比研究,以验证模拟效果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号