首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The volatility of fossil fuel and their increased consumption have exacerbated the socio-economic dilemma along with electricity expenses in third world countries around the world, Pakistan in particular. In this research, we study the output of renewable hydrogen from natural sources like wind, solar, biomass, and geothermal power. It also provides rules and procedures in an attempt to determine the current situation of Pakistan regarding the workability of upcoming renewable energy plans. To achieve this, four main criteria were assessed and they are economic, commercial, environmental, and social adoption. The method used in this research is the Fuzzy Analytical Hierarchical Process (FAHP), where we used first-order engineering equations, and Levelized cost electricity to produce renewable hydrogen. The value of renewable hydrogen is also evaluated. The results of the study indicate that wind is the best option in Pakistan for manufacturing renewable based on four criteria. Biomass is found to be the most viable raw material for the establishment of the hydrogen supply network in Pakistan, which can generate 6.6 million tons of hydrogen per year, next is photovoltaic solar energy, which has the capability of generating 2.8 million tons. Another significant finding is that solar energy is the second-best candidate for hydrogen production taking into consideration its low-cost installation and production. The study shows that the cost of using hydrogen in Pakistan ranges from $5.30/kg to $5.80/kg, making it a competitive fuel for electric machines. Such projects for producing renewable power must be highlighted and carried out in Pakistan and this will lead to more energy security for Pakistan, less use of fossil fuels, and effective reduction of greenhouse gas emissions.  相似文献   

2.
Hydrogen energy can play a pivotal part in enhancing energy security and decreasing hazardous emissions in Pakistan. However, hydrogen energy can be sustainable and clean only if it is produced from renewable energy sources (RES). Therefore, this study conducts feasibility of six RES for the generation of hydrogen in Pakistan. RES evaluated in this study include wind, solar, biomass, municipal solid waste (MSW), geothermal, and micro-hydro. RES have been evaluated using Fuzzy Delphi, fuzzy analytical hierarchy process (FAHP), and environmental data envelopment analysis (DEA). Fuzzy Delphi finalizes criteria and sub-criteria. FAHP obtains relative weights of criteria considered for choosing the optimal RES. Environmental DEA measures relative efficiency of each RES using criteria weights as outputs, and RES-based electricity generation cost as input. The results revealed wind as the most efficient source of hydrogen production in Pakistan. Micro-hydro and Solar energy can also be used for hydrogen production. Biomass, MSW, and geothermal achieved less efficiency scores and therefore are not suggested at present.  相似文献   

3.
Cheap Production of bioethanol from renewable lignocellulosic waste has the imperative potential to economically cut burgeoning world dependency on fossils while reducing net emission of carbon dioxide (CO2), a principal greenhouse gas (GHGs). This paper highlights key benefits and status of bioethanol production technologies, aiming mainly on recent developments and its key potentials in Pakistan. Most sector of Pakistan economy heavily rely on the energy and power that is being produced using traditional approaches like from oil and hydel. However, the sedimentation in dams cut-down the energy generation and overwhelmed severe energy crisis that are witnessed since last decade. Thus, Pakistan must go to avail alternative sources of energy like hydro, biomass and solar so that energy security can be ensured to recover the tremendous loss of economy. Renewable biomass is abundantly available in Pakistan which can be used to produce bioethanol and electricity. Currently, 22 distilleries are producing the ethanol from sugar cane bagasse and out of these only 8 distillation units are producing motor fuel grade ethanol. The current bioethanol production of country is about 403,500 tons/year along with 2423 tons of biodegradable waste available in major cities. In addition, Pakistan produces 6.57, 0.5, 0.66, and 2.66 million tons of sugarcane, corn, rice, and wheat straw per annum, respectively. This biomass can produce 1.6 million liters of bioethanol which can produce approximately 38% of Pakistan's electricity annually. Despite having large potential, Pakistan is still producing a few volumes of ethanol from sugarcane bagasse. The production of bioethanol can be boosted using (I) pretreatment of agricultural biomass by alkali (II) enzymatic and bacteria-based hydrolysis of the biomass (III) post-hydrolysis using pressurized steam above 100 °C (IV) Fermentation of the biomass@ 7–10 h and (V) and (VI) distillation of bioethanol. This study recommends (1) increase R&D capacities mainly in the west and central regions of Pakistan, (2) initiate mega-projects to promote integrated bio-ethanol production at agriculture farms by providing 1/3 subsides, (3) purchase of bioethanol directly from the major agricultural farms, (4) produce bioethanol related manpower from the key research institutes as specified in this study.  相似文献   

4.
Hydrogen has been using as one of the green fuel along with conventional fossil fuels which has enormous prospect. A new dimension of hydrogen energy technology can reduce the dependency on non-renewable energy sources due to the rapid depletion of fossil fuels. Hydrogen production via Biomass (Municipal solid waste, Agricultural waste and forest residue) gasification is one of the promising and economic technologies. The study highlights the hydrogen production potential from biomass through gasification technology and review the parameters effect of hydrogen production such as temperature, pressure, biomass and agent ratio, equivalence ratios, bed material, gasifying agents and catalysts effect. The study also covers the all associated steps of hydrogen separation and purification, WGS reaction, cleaning and drying, membrane separation and pressure swing adsorption (PSA). To meet the huge and rising energy demand, many countries made a multidimensional power development plan by adding different renewable, nuclear and fossil fuel sources. A large amount of biomass (total biomass production in Bangladesh is 47.71 million ton coal equivalent where 37.16, 3.49 and 7.04 MTCE are agricultural, MSW and forest residue based biomass respectively by 2016) is produced from daily uses by a big number of populations in a country. It also includes total feature of biomass gasification plant in Bangladesh.  相似文献   

5.
The majority of energy being used is obtained from fossil fuels, which are not renewable resources and require a longer time to recharge or return to its original capacity. Energy from fossil fuels is cheaper but it faces some challenges compared to renewable energy resources. Thus, one of the most potential candidates to fulfil the energy requirements are renewable resources and the most environmentally friendly fuel is Hydrogen. Hydrogen is a clean and efficient energy carrier and a hydrogen-based economy is now widely regarded as a potential solution for the future of energy security and sustainability. Hydrogen energy became the most significant energy as the current demand gradually starts to increase. It is an important key solution to tackle the global temperature rise. The key important factor of hydrogen production is the hydrogen economy. Hydrogen production technologies are commercially available, while some of these technologies are still under development. Therefore, the global interest in minimising the effects of greenhouse gases as well as other pollutant gases also increases. In order to investigate hydrogen implementation as a fuel or energy carrier, easily obtained broad-spectrum knowledge on a variety of processes is involved as well as their advantages, disadvantages, and potential adjustments in making a process that is fit for future development. Aside from directly using the hydrogen produced from these processes in fuel cells, streams rich with hydrogen can also be utilised in producing ethanol, methanol, gasoline as well as various chemicals of high value. This paper provided a brief summary on the current and developing technologies of hydrogen that are noteworthy.  相似文献   

6.
Hong Kong is highly vulnerable to energy and economic security due to the heavy dependence on imported fossil fuels. The combustion of fossil fuels also causes serious environmental pollution. Therefore, it is important to explore the opportunities for clean renewable energy for long-term energy supply. Hong Kong has the potential to develop clean renewable hydrogen energy to improve the environmental performance. This paper reviews the recent development of hydrogen production technologies, followed by an overview of the renewable energy sources and a discussion about potential applications for renewable hydrogen production in Hong Kong. The results show that although renewable energy resources cannot entirely satisfy the energy demand in Hong Kong, solar energy, wind power, and biomass are available renewable sources for significant hydrogen production. A system consisting of wind turbines and photovoltaic (PV) panels coupled with electrolyzers is a promising design to produce hydrogen. Biomass, especially organic waste, offers an economical, environmental-friendly way for renewable hydrogen production. The achievable hydrogen energy output would be as much as 40% of the total energy consumption in transportation.  相似文献   

7.
Hydrogen production from renewable energies is a key part in the energy transition to realize a sustainable energy economy for both developed and developing nations. For Algeria, successful energy transition toward a hydrogen economy will require the establishment of its potential. This study was conducted to estimate the potential for producing hydrogen from renewable resources in Algeria. The renewable energies considered are: solar photovoltaic and wind. To accomplish this objective, first, we analyzed renewable resource data both statistically and graphically using Geographical Information System (GIS), a computer-based information system utilized to create and visualize the spatial distribution of the geographic information. Then, the study will evaluate the availability of renewable electricity production potential from these key renewable resources. The potential for the hydrogen production, via the electrolysis process with wind and solar photovoltaic electricity, is described with maps showing it per unit area in each region. Finally, the results of the estimated hydrogen potential from both resources for each region are compared and significant conclusions are drawn.  相似文献   

8.
Green hydrogen energy is a natural substitute for fuel-based energy and it increases a country's long-term energy safety. Pakistan has been a victim of a severe energy crisis for the past few decades. In this context, this research addresses green hydrogen generation and renewable energy supply (i.e., wind, solar, biomass, public waste, geothermal and small hydropower) as an alternate energy source in Pakistan. The assessment is carried out through a two-step framework (i.e., Fuzzy-AHP and non-parametric DEA). Results show that Pakistan has abundant renewable power capacity from wind, which the light-duty transport in the country can opt. Almost 4.89 billion gallons of fuel are consumed annually in Sindh, whereas Punjab uses up around 6.92 billion gallons of fuel annually, which need to be substituted with 1.63 billion kg and 2.31 billion kg of wind-produced hydrogen, respectively. It has been discovered that solar and wind energy attain the same criterion of weights (i.e., 0.070) in-line with the commercial potential criterion. Besides, wind-generated power is ideal for green hydrogen generation in Pakistan, and the subsequent choice for green hydrogen energy is small hydropower and solar, which are also good for green hydrogen generation in the country. Hence, this research offers a solid recommendation for the use of wind energy, which is ideal for the production of Green Hydrogen energy in the country.  相似文献   

9.
In this study, a parametric investigation is carried out to estimate the hydrogen energy potential depending on the quantities of H2S in Black Sea deep waters. The required data for H2S in Black Sea deep waters are taken from the literature. For this investigation, the H2S concentration and water layer depth are taken into account, and 100% of conversion efficiency is assumed. Consequently, it is estimated that total hydrogen energy potential is approximately 270 million tons produced from 4.587 billion tons of H2S in Black Sea deep waters. Using this amount of hydrogen, it will be possible to produce 38.3 million TJ of thermal energy or 8.97 million GWh of electricity energy. Moreover, it is determined that total hydrogen potential in Black Sea deep waters is almost equal to 808 million tons of gasoline or 766 million tons of NG (natural gas) or 841 million tons of fuel oil or 851 million tons of natural petroleum. These values show that the hydrogen potential from hydrogen sulphur in Black Sea deep water will play an important role to supply energy demands of the regional countries. Thus, it can be said that hydrogen energy reserve in Black Sea is an important candidate for the future hydrogen energy systems.  相似文献   

10.
Renewable energies fluctuate, resulting in temporary mismatches between demand and supply. The conversion of surplus energy to hydrogen and its storage in geological formations is one option to counteract this energy imbalance. This study evaluates the feasibility of seasonal storage of hydrogen produced from wind power in Castilla-León region (northern Spain). A 3D multiphase numerical model is used to test different extraction well configurations during three annual injection-production cycles in a saline aquifer. Results demonstrate that underground hydrogen storage in saline aquifers can be operated with reasonable recovery ratios. A maximum hydrogen recovery ratio of 78%, which represents a global energy efficiency of 30%, has been estimated. Hydrogen upconing emerges as the major risk on saline aquifer storage without using other cushion gases. However, shallow extraction wells can minimize its effects. Steeply dipping geological structures are key for an efficient hydrogen storage.  相似文献   

11.
Kazakhstan has long been regarded as a major exporter of fossil fuel energy. As the global energy sector is undergoing an unprecedented transition to low-carbon solutions, new emerging energy technologies, such as hydrogen production, require more different resource bases than present energy technologies. Kazakhstan needs to consider whether it has enough resources to stay competitive in energy markets undergoing an energy transition. Green hydrogen can be made from water electrolysis powered by low-carbon electricity sources such as wind turbines and solar panels. We provided the first resource assessment for green hydrogen production in Kazakhstan by focusing on three essential resources: water, renewable electricity, and critical raw materials. Our estimations showed that with the current plan of Kazakhstan to keep its water budget constant in the future, producing 2–10 Mt green hydrogen would require reducing the water use of industry in Kazakhstan by 0.6–3% or 0.036–0.18 km3/year. This could be implemented by increasing the share of renewables in electricity generation and phasing out some of the water- and carbon-intensive industries. Renewable electricity potential in South and West Kazakhstan is sufficient to run electrolyzers up to 5700 and 1600 h/year for wind turbines and solar panels, respectively. In our base case scenario, 5 Mt green hydrogen production would require 50 GW solar and 67 GW wind capacity, considering Kazakhstan's wind and solar capacity factors. This could convert into 28,652 tons of nickel, 15,832 tons of titanium, and many other critical raw materials. Although our estimations for critical raw materials were based on limited geological data, Kazakhstan has access to the most critical raw materials to support original equipment manufacturers of low-carbon technologies in Kazakhstan and other countries. As new geologic exploration kicks off in Kazakhstan, it is expected that more deposits of critical raw materials will be discovered to respond to their potential future needs for green hydrogen production.  相似文献   

12.
Hydrogen has been recognized as the most promising future energy carrier. At present, industrial hydrogen production processes are not independent of traditional energy resources, which could easily cause secondary pollution. China has abundant wind energy resources. The total installed capacity of wind power doubled every year in the last five years, and reached 26 000 MW by the end of 2009, but over 9880 MW wind turbines were not integrated into grid because of the peak shaving restraint. In this paper, wind power is directly used in water-electrolytic process by some technical improvements, to design non-grid-connected wind power/water-electrolytic hydrogen production system. The system all works properly, based on not only the wind/grid complementary power supply but also the independent supply of simulation wind power. The large-scale fluctuation of current density has little impact on current efficiency and gas quality, and only affects gas output. The new system can break through the bottlenecks of wind power utilization, and explore a diversified development way of large-scale wind power, which will contribute to the development of green economy and low carbon economy in China.  相似文献   

13.
Fossil fuels possess very useful properties not shared by non-conventional energy sources that have made them popular during the last century but unfortunately they are not renewable. Since the oil crisis of 1973, considerable progress has been made in the search for alternative energy sources. Among the candidates, hydrogen holds a pre-eminent position because of its high energy content, environmental compatibility and ease of storage and distribution. Hydrogen can be produced in a variety of ways. Water electrolysis is one of the most utilized industrial processes for hydrogen production. This article discusses advantages and disadvantages of hydrogen energy. Besides, barriers and challenges to hydrogen economy have been summarized. The current energy situation in Pakistan is presented followed by a road map to hydrogen economy in Pakistan. It is concluded that a combination of fuel cells and a hydrogen infrastructure is a way forward to combat the long-term challenges of climate change and energy security for Pakistan. The hydrogen economy potentially offers the possibility to deliver a range of benefits for the country; however, significant challenges exist and these are unlikely to be overcome without serious efforts.  相似文献   

14.
The most challenging aspect of developing a green hydrogen economy is long-distance oceanic transportation. Hydrogen liquefaction is a transportation alternative. However, the cost and energy consumption for liquefaction is currently prohibitively high, creating a major barrier to hydrogen supply chains. This paper proposes using solid nitrogen or oxygen as a medium for recycling cold energy across the hydrogen liquefaction supply chain. When a liquid hydrogen (LH2) carrier reaches its destination, the regasification process of the hydrogen produces solid nitrogen or oxygen. The solid nitrogen or oxygen is then transported in the LH2 carrier back to the hydrogen liquefaction facility and used to reduce the energy consumption cooling gaseous hydrogen. As a result, the energy required to liquefy hydrogen can be reduced by 25.4% using N2 and 27.3% using O2. Solid air hydrogen liquefaction (SAHL) can be the missing link for implementing a global hydrogen economy.  相似文献   

15.
The focus of this study is the use of Machine Learning methods to forecast Solar Hydrogen production potential for the Islamabad region of Pakistan. For this purpose, we chose a Photovoltaic-Electrolytic (PV-E) system to forecast electricity and, hence, hydrogen production. The weather data used for forecasting and simulation were recorded with precise meteorological instruments stationed in Islamabad, over the course of 13 and a half months. Out of the three tested algorithms, Prophet performs the best with Mean Absolute Percentage Error of 3.7%, forecasting a daily average Hydrogen production of 93.3 × 103 kg/Km2. Although, the forecast in this study is made for the month of August and September, during which the local season moves towards winter, this study demonstrates solar hydrogen production, as a green energy source, has a tremendous potential in this region.  相似文献   

16.
Air pollution is a serious public health problem throughout the world, especially in industrialized and developing countries. In industrialized and developing countries, motor vehicle emissions are major contributors to urban air quality. Hydrogen is one of the clean fuel options for reducing motor vehicle emissions. Hydrogen is not an energy source. It is not a primary energy existing freely in nature. Hydrogen is a secondary form of energy that has to be manufactured like electricity. It is an energy carrier. Hydrogen has a strategic importance in the pursuit of a low-emission, environment-benign, cleaner and more sustainable energy system. Combustion product of hydrogen is clean, which consists of water and a little amount of nitrogen oxides. Hydrogen has very special properties as a transportation fuel, including a rapid burning speed, a high effective octane number, and no toxicity or ozone-forming potential. It has much wider limits of flammability in air than methane and gasoline. Hydrogen has become the dominant transport fuel, and is produced centrally from a mixture of clean coal and fossil fuels (with C-sequestration), nuclear power, and large-scale renewables. Large-scale hydrogen production is probable on the longer time scale. In the current and medium term the production options for hydrogen are first based on distributed hydrogen production from electrolysis of water and reforming of natural gas and coal. Each of centralized hydrogen production methods scenarios could produce 40 million tons per year of hydrogen. Hydrogen production using steam reforming of methane is the most economical method among the current commercial processes. In this method, natural gas feedstock costs generally contribute approximately 52–68% to the final hydrogen price for larger plants, and 40% for smaller plants, with remaining expenses composed of capital charges. The hydrogen production cost from natural gas via steam reforming of methane varies from about 1.25 US$/kg for large systems to about 3.50 US$/kg for small systems with a natural gas price of 6 US$/GJ. Hydrogen is cheap by using solar energy or by water electrolysis where electricity is cheap, etc.  相似文献   

17.
The purpose of this study is to assess the political, economic and environmental impacts of producing hydrogen from biomass. Hydrogen is a promising renewable fuel for transportation and domestic applications. Hydrogen is a secondary form of energy that has to be manufactured like electricity. The promise of hydrogen as an energy carrier that can provide pollution-free, carbon-free power and fuels for buildings, industry, and transport makes it a potentially critical player in our energy future. Currently, most hydrogen is derived from non-renewable resources by steam reforming in which fossil fuels, primarily natural gas, but could in principle be generated from renewable resources such as biomass by gasification. Hydrogen production from fossil fuels is not renewable and produces at least the same amount of CO2 as the direct combustion of the fossil fuel. The production of hydrogen from biomass has several advantages compared to that of fossil fuels. The major problem in utilization of hydrogen gas as a fuel is its unavailability in nature and the need for inexpensive production methods. Hydrogen production using steam reforming methane is the most economical method among the current commercial processes. These processes use non-renewable energy sources to produce hydrogen and are not sustainable. It is believed that in the future biomass can become an important sustainable source of hydrogen. Several studies have shown that the cost of producing hydrogen from biomass is strongly dependent on the cost of the feedstock. Biomass, in particular, could be a low-cost option for some countries. Therefore, a cost-effective energy-production process could be achieved in which agricultural wastes and various other biomasses are recycled to produce hydrogen economically. Policy interest in moving towards a hydrogen-based economy is rising, largely because converting hydrogen into useable energy can be more efficient than fossil fuels and has the virtue of only producing water as the by-product of the process. Achieving large-scale changes to develop a sustained hydrogen economy requires a large amount of planning and cooperation at national and international alike levels.  相似文献   

18.
The collective endeavor in reaching net-zero emissions by 2050 and halting the impending effects of global warming has found a promising solution-hydrogen, a clean energy carrier with diversified applications. It is practical to transition H2 production at scale from fossil fuels to renewable sources. The choice of appropriate hydrogen production route from renewables would regionally vary, depending on various factors. While a majority of the developed countries have kickstarted their transition towards a hydrogen economy, developing countries like Bangladesh have been lagging. This review explores the potential of a hydrogen-based energy system for Bangladesh - commencing with a technological comparison of existing production paths from renewable resources; then moving on to a preliminary analysis of its available resources and technology options. Finally, a roadmap toward a hydrogen economy is envisioned, as the foundation for further study and public policy initiatives aimed at hastening Bangladesh's transition to a carbon-free energy system.  相似文献   

19.
This paper proposes a novel method combining Pinch Methodology and waste hydrogen recovery, aiming to minimise fresh hydrogen consumption and waste hydrogen discharge. The method of multiple-level resource Pinch Analysis is extended to the level of Total Site Hydrogen Integration by considering fresh hydrogen sources with various quality. Waste hydrogen after Total Site Integration is further regenerated. The technical feasibility and economy of the various purification approaches are considered, demonstrated with a case study of a refinery hydrogen network in a petrochemical industrial park. The results showed that fresh hydrogen usage and waste hydrogen discharge could be reduced by 21.3% and 67.6%. The hydrogen recovery ratio is 95.2%. It has significant economic benefits and a short payback period for Total Site Hydrogen Integration with waste hydrogen purification. The proposed method facilitates the reuse of waste hydrogen before the purification process that incurs an additional environmental footprint. In line with the Circular Economy principles, hydrogen resource is retained in the system as long as possible before discharge.  相似文献   

20.
Hydrogen is expected to play a significant role in the future energy system. A key enabler to a hydrogen-including economy will be the development and deployment of processes that can produce hydrogen whilst satisfying the criteria for sustainability, i.e. economic competitiveness, environmental protection and security of energy supply. This paper evaluates selected hydrogen production processes based on natural gas steam reforming, coal and biomass gasification and water electrolysis. These options are expected to play a significant role in the short to medium term. Industrial large-scale processes, using natural gas and coal, will constitute the most important routes. However, increasing prices for natural gas are likely to make coal gasification more competitive. Biomass gasification could become important if present technological barriers are overcome. Electrolytic hydrogen, however, will likely be practical for niche applications in the short term due to the high electricity costs, especially when electricity is generated by renewable energy sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号