首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
In this article the calculation tool further developed and implemented in Matlab language by the authors was used to determine some optimal operating conditions in electrical and thermal or electrical terms for two different types of hybrid systems: molten carbonate fuel cells (MCFC)/gas turbine with their heat recovery system and the hybrid systems operating in these optimal conditions were analyzed. In the heat recovery system, in both cases, a part of the thermal energy of these gases is used to produce the steam necessary for the MCFC system. The remaining thermal energy is used, in one case, for the production of steam at various levels of pressure and temperature, which feeds a steam bottom plant to produce additional electric energy; in the other case, the same thermal energy is used to produce steam for cogenerative use. The heat recovery system was suitably designed according to the circumstances and the performances and the specific CO2 emissions of the hybrid systems were evaluated. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
In order to realize biomass potential as a major source of energy in the power generation and transport sectors, there is a need for high efficient and clean energy conversion devices, especially in the low-medium range suiting the disperseness of this fuel. Large installations, based on boiler coupled to steam turbine (or IGCC), are too complex at smaller scale, where biomass gasifiers coupled to ICEs have low electrical efficiency (15-30%) and generally not negligible emissions.This paper analyses new plants configurations consisted of Fast Internal Circulated Fluidized-Bed Gasifier, hot-gas conditioning and cleaning, high temperature fuel cells (MCFC), micro gas turbines, water gas shift reactor and PSA to improve flexibility and electric efficiency at medium scale. The power plant feasibility was analyzed by means of a steady state simulation realized through the process simulator Chemcad in which a detailed 2D Fortran model has been integrated for the MCFC. A comparison of the new plant working with external (MCFC-ER) and internal (MCFC-IR) reforming MCFC was carried out. The small amount of methane in the syngas obtained by atmospheric pressure biomass gasification is not enough to exploit internal reforming cooling in the MCFC. This issue has been solved by the use of pre-reformer working as methanizer upstream the MCFC. The results of the simulations shown that, when MCFC-IR is used, the parameters of the cell are better managed. The result is a more efficient use of fuel even if some energy has to be consumed in the methanizer. In the MCFC-IR and MCFC-ER configurations, the calculated cell efficiency is, respectively, 0.53 and 0.42; the electric power produced is, respectively, 236 and 216 kWe, and the maximum temperature reached in the cell layer is, respectively, 670 °C and 700 °C. The MCFC-ER configuration uses a cathode flowrate for MCFC cooling that are 30% lower than MCFC-IR configuration. This reduces pressure drop in the MCFC, possible crossover effect and auxiliaries power consumption. The electrical efficiency for the MCFC-IR configuration reaches 38%.  相似文献   

3.
Biomass has recently received considerable attention as a potential substitute for fossil fuels in electric power production. Renewable biomass crops, industrial wood residues, and municipal wastes as fuels for production of electricity allow substantial reduction of environmental impact. High reactivity of biomass makes it relatively easy to convert solid feedstocks into gaseous fuel for subsequent use in a power cycle.So far most of the studies were focused on investigating performance and economics of biomass gasifiction–gas turbine systems. A general conclusion resulting from these studies is that the combination of biomass gasifiers, hot gas cleanup systems, and advanced gas turbines is promising for cost competitive electric power generation[1, 2]. In this paper another concept of biomass fueled power systems is considered, namely biomass gasification with a molten carbonate fuel cell (MCFC). Comparison between two concepts is made in terms of efficiency, feasibility, and process requirements. As an example of such a system, a highly efficient novel power cycle consisting of the Battelle gasification process, a molten carbonate fuel cell, and a steam turbine is introduced. The calculated efficiency is around 53%, which exceeds efficiencies of traditional designs[1, 3] considerably. Finally, an economic analysis and electricity cost projection are performed for a power plant consuming 2000 tons of biomass per day. Results are compared with those for more traditional integrated biomass gasification/gas turbine systems and for coal fueled cycles.  相似文献   

4.
Power generation and its storage using solar energy and hydrogen energy systems is a promising approach to overcome serious challenges associated with fossil fuel-based power plants. In this study, an exergoeconomic model is developed to analyze a direct steam solar tower-hydrogen gas turbine power plant under different operating conditions. An on-grid solar power plant integrated with a hydrogen storage system composed of an electrolyser, hydrogen gas turbine and fuel cell is considered. When solar energy is not available, electrical power is generated by the gas turbine and the fuel cell utilizing the hydrogen produced by the electrolyser. The effects of different working parameters on the cycle performance during charging and discharging processes are investigated using thermodynamic analysis. The results indicate that increasing the solar irradiation by 36%, leads to 13% increase in the exergy efficiency of the cycle. Moreover, the mass flow rate of the heat transfer fluid in solar system has a considerable effect on the exergy cost of output power. Solar tower has the highest exergy destruction and capital investment cost. The highest exergoeconomic factor for the integrated cycle is 60.94%. The steam turbine and PEM electrolyser have the highest share of exergoeconomic factor i.e., 80.4% and 50%, respectively.  相似文献   

5.
In this paper, a biogas fuelled power generation system is considered. The system is based on a molten carbonate fuel cell (MCFC) stack integrated with a micro gas turbine for electricity generation, coupled with a pressure swing absorption system (PSA) for hydrogen production.  相似文献   

6.
Integrating fuel cells with conventional gas turbine based power plant yields higher efficiency, especially solid oxide fuel cell (SOFC) with gas turbine (GT). SOFCs are energy efficient devices, performance of which are not limited to Carnot efficiency and considered as most promising candidate for thermal integration with Brayton cycle. In this paper, a novel and optimal thermal integration of SOFC with intercooled-recuperated gas turbine has been presented. A thermodynamic model of a proposed hybrid cycle has been detailed along with a novelty of adoption of blade cooled gas turbine model. On the basis of 1st and 2nd law of thermodynamics, parametric analysis has been carried out, in which impact of turbine inlet temperature and compression ratio has been observed on various output parameters such as hybrid efficiency, hybrid plant specific work, mass of blade coolant requirement and entropy generation rate. For optimizing the system performance, entropy minimization has been carried out, for which a constraint based algorithm has been developed. The result shows that entropy generation of a proposed hybrid cycle first increases and then decreases, as the turbine inlet temperature of the cycle increases. Furthermore, a unique performance map has also been plotted for proposed hybrid cycle, which can be utilized by power plant designer. An optimal efficiency of 74.13% can be achieved at TIT of 1800 K and rp,c 20.  相似文献   

7.
A novel combined molten carbonate fuel cell – steam turbine based system is proposed herein. In this cycle, steam is produced through the recovery of useful heat of an internal reforming MCFC and operates as work fluid in a Rankine cycle. Exergoeconomic analysis was performed, in order to verify the technical feasibility, including which components could be improved for greater efficiencies, as well as the cost of the power generated by the plant. A 10 MW MCFC was initially proposed, when the system reached 54.1% of thermal efficiency, 8.3% higher than MCFC alone, 11.9 MW of net power, 19% higher than MCFC alone, and an energy cost of 0.352 $/kWh. A sensitivity analysis was carried out and the parameters that most influenced on the cost were pointed out. The analysis pointed to the MCFC generation as the most impactful factor. By manipulating these values, it could be noted a significant power cost decrease, reaching satisfactory values to become economically feasible. The concept of economy of scale could be noticed in the proposed system, proving that a large-scale plant could be the focus of investment and public policies.  相似文献   

8.
Solid oxide fuel cell (SOFC) is a promising technology for electricity generation. Sulfur-free syngas from a gas-cleaning unit serves as fuel for SOFC in integrated gasification fuel cell (IGFC) power plants. It converts the chemical energy of fuel gas directly into electric energy, thus high efficiencies can be achieved. The outputs from SOFC can be utilized by heat recovery steam generator (HRSG), which drives the steam turbine for electricity production. The SOFC stack model was developed using the process flow sheet simulator Aspen Plus, which is of the equilibrium type. Various ranges of syngas properties gathered from different literature were used for the simulation. The results indicate a trade-off efficiency and power with respect to a variety of SOFC inputs. The HRSG located after SOFC was included in the current simulation study with various operating parameters. This paper describes IGFC power plants, particularly the optimization of HRSG to improve the efficiency of the heat recovery from the SOFC exhaust gas and to maximize the power production in the steam cycle in the IGFC system. HRSG output from different pressure levels varies depending on the SOFC output. The steam turbine efficiency was calculated for measuring the total power plant output. The aim of this paper is to provide a simulation model for the optimal selection of the operative parameters of HRSG and SOFC for the IGFC system by comparing it with other models. The simulation model should be flexible enough for use in future development and capable of predicting system performance under various operating conditions.  相似文献   

9.
Solid oxide fuel cell (SOFC) is a promising technology for electricity generation. Sulfur-free syngas from a gas-cleaning unit serves as fuel for SOFC in integrated gasification fuel cell (IGFC) power plants. It converts the chemical energy of fuel gas directly into electric energy, thus high efficiencies can be achieved. The outputs from SOFC can be utilized by heat recovery steam generator (HRSG), which drives the steam turbine for electricity production. The SOFC stack model was developed using the process flow sheet simulator Aspen Plus, which is of the equilibrium type. Various ranges of syngas properties gathered from different literature were used for the simulation. The results indicate a trade-off efficiency and power with respect to a variety of SOFC inputs. The HRSG located after SOFC was included in the current simulation study with various operating parameters. This paper describes IGFC power plants, particularly the optimization of HRSG to improve the efficiency of the heat recovery from the SOFC exhaust gas and to maximize the power production in the steam cycle in the IGFC system. HRSG output from different pressure levels varies depending on the SOFC output. The steam turbine efficiency was calculated for measuring the total power plant output. The aim of this paper is to provide a simulation model for the optimal selection of the operative parameters of HRSG and SOFC for the IGFC system by comparing it with other models. The simulation model should be flexible enough for use in future development and capable of predicting system performance under various operating conditions.  相似文献   

10.
This paper presents the work on the design and part-load operations of a hybrid power system composed of a pressurized molten carbonate fuel cell (MCFC) and a micro-gas turbine (MGT). The gas turbine is an existing one and the MCFC is assumed to be newly designed for the hybrid system. Firstly, the MCFC power and total system power are determined based on the existing micro-gas turbine according to the appropriate MCFC operating temperature. The characteristics of hybrid system on design point are shown. And then different control methods are applied to the hybrid system for the part-load operation. The effect of different control methods is analyzed and compared in order to find the optimal control strategy for the system. The results show that the performance of hybrid system during part-load operation varies significantly with different control methods. The system has the best efficiency when using variable rotational speed control for the part-load operation. At this time both the turbine inlet temperature and cell operating temperature are close to the design value, but the compressor would cross the surge line when the shaft speed is less than 70% of the design shaft speed. For the gas turbine it is difficult to obtain the original power due to the higher pressure loss between compressor and turbine.  相似文献   

11.
A new integrated power generation system driven by the solid oxide fuel cell (SOFC) is proposed to improve the conversion efficiency of conventional energy by using a Kalina cycle to recover the waste heat of exhaust from the SOFC-GT. The system using methane as main fuel consists an internal reforming SOFC, an after-burner, a gas turbine, preheaters, compressors and a Kalina cycle. The proposed system is simulated based on the developed mathematical models, and the overall system performance has been evaluated by the first and second law of thermodynamics. Exergy analysis is conducted to indicate the thermodynamic losses in each components. A parametric analysis is also carried out to examine the effects of some key thermodynamic parameters on the system performance. Results indicate that as compressor pressure ratio increases, SOFC electrical efficiency increases and there is an optimal compressor pressure ratio to reach the maximum overall electrical efficiency and exergy efficiency. It is also found that SOFC electrical efficiency, overall electrical efficiency and exergy efficiency can be improved by increasing air flow rate. Also, the largest exergy destruction occurs in the SOFC followed by the after-burner, the waste heat boiler, the gas turbine. The compressor pressure ratio and air flow rate have significant effects on the exergy destruction in some main components of system.  相似文献   

12.
This study proposes a molten carbonate fuel cell (MCFC)-based hybrid propulsion system for a liquefied hydrogen tanker. This system consists of a molten carbonate fuel cell and a bottoming cycle. Gas turbine and steam turbine systems are considered for recovering heat from fuel cell exhaust gases. The MCFC generates a considerable propulsion power, and the turbomachinery generates the remainder of the power. The hybrid systems are evaluated regarding system efficiency, economic feasibility, and exhaust emissions. The MCFC with a gas turbine has higher system efficiency than that with a steam turbine. The air compressor consumes substantial power and should be mechanically connected to the gas turbine. Although fuel cell-based systems are less economical than other propulsion systems, they may satisfy the environmental regulations. When the ship is at berth, the MCFC systems can be utilized as distributed generation that is connected to the onshore-power grid.  相似文献   

13.
Carbon dioxide emissions into the atmosphere are considered among the main reasons of the greenhouse effect. The largest share of CO2 is emitted by power plants using fossil fuels. Nowadays there are several technologies to capture CO2 from power plants' exhaust gas but each of them consumes a significant part of the electric power generated by the plant. The Molten Carbonate Fuel Cell (MCFC) can be used as concentrator of CO2, due to the chemical reactions that occurs in the cell stack: carbon dioxide entering into the cathode side is transported to the anode side via CO3= ions and is finally concentrated in the anodic exhaust. MCFC systems can be integrated in existing power plants (retro fitting) to separate CO2 in the exhaust gas and, at the same time, produce additional energy. The aim of this study is to find a feasible system design for medium scale cogeneration plants which are not considered economically and technically interesting for existing technologies for carbon capture, but are increasing in numbers with respect to large size power plants. This trend, if confirmed, will increase number of medium cogeneration plants with consequent benefit for both MCFC market for this application and effect on global CO2 emissions. System concept has been developed in a numerical model, using AspenTech engineering software. The model simulates a plant, which separates CO2 from a cogeneration plant exhaust gases and produces electric power. Data showing the effect of CO2 on cell voltage and cogenerator exhaust gas composition were taken from experimental activities in the fuel cell laboratory of the University of Perugia, FCLab, and from existing CHP plants. The innovative aspect of this model is the introduction of recirculation to optimize the performance of the MCFC. Cathode recirculation allows to decrease the carbon dioxide utilization factor of the cell keeping at the same time system CO2 removal efficiency at high level. At anode side, recirculation is used to reduce the fuel consumption (due to the unreacted hydrogen) and to increase the CO2 purity in the stored gas. The system design was completely introduced in the model and several analyses were performed. CO2 removal efficiency of 63% was reached with correspondent total efficiency of about 35%. System outlet is also thermal power, due to the high temperature of cathode exhaust off gases, and it is possible to consider integration of this outlet with the cogeneration system. This system, compared to other post-combustion CO2 removal technologies, does not consume energy, but produces additional electrical and thermal power with a global efficiency of about 70%.  相似文献   

14.
This study was aimed at proposing a novel integrated process for co-production of hydrogen and electricity through integrating biomass gasification, chemical looping combustion, and electrical power generation cycle with CO2 capture. Syngas obtained from biomass gasification was used as fuel for chemical looping combustion process. Calcium oxide metal oxide was used as oxygen carrier in the chemical looping system. The effluent stream of the chemical looping system was then transferred through a bottoming power generation cycle with carbon capture capability. The products achieved through the proposed process were highly-pure hydrogen and electricity generated by chemical looping and power generation cycle, respectively. Moreover, LNG cold energy was used as heat sink to improve the electrical power generation efficiency of the process. Sensitivity analysis was also carried out to scrutinize the effects of influential parameters, i.e., carbonator temperature, steam/biomass ratio, gasification temperature, gas turbine inlet stream temperature, and liquefied natural gas (LNG) flow rate on the plant performance. Overall, the optimum heat integration was achieved among the sub-systems of the plant while a high energy efficiency and zero CO2 emission were also accomplished. The findings of the present study could assist future investigations in analyzing the performance of integrated processes and in investigating optimal operating conditions of such systems.  相似文献   

15.
In order to meet the energy and fuel needs of societies in a sustainable way and hence preserve the environment, there is a strong need for clean, efficient and low-emission energy systems. In this regard, it is aimed to generate cleaner energy outputs, such as electricity, hydrogen and ammonia as well as some additional useful commodities by utilizing both methane gas and the waste heat of an integrated unit to the whole system. In this paper, a novel multi-generation plant is proposed to generate power, hydrogen and ammonia as a chemical fuel, drying, freshwater, heating, and cooling. For this reason, the Brayton cycle as prime unit using methane gas is integrated into the s-CO2 power cycle, organic Rankine cycle, PEM electrolyzer, freshwater production unit, cooling cycle and dryer unit. In order then to evaluate the designed integrated multigeneration system, thermodynamic analyses and parametric studies are performed, revealing that the energy and exergy efficiencies of the whole plant are found to be 69.08% and 65.42%. In addition, ammonia and hydrogen production rates have been found to be 0.2462 kg/s and 0.0631 kg/s for the methane fuel mass flow rate of 1.51 kg/s. Also, the effects of the reference temperature, pinch point temperature of superheater, combustion chamber temperature, gas turbine input pressure, and mass flow rate of fuel on numerous parameters and performance of the plant are investigated.  相似文献   

16.
Cogeneration power plants based on fuel cells are a promising technology to produce electric and thermal energy with reduced costs and environmental impact. The most mature fuel cell technology for this kind of applications are polymer electrolyte membrane fuel cells, which require high-purity hydrogen.The most common and least expensive way to produce hydrogen within today's energy infrastructure is steam reforming of natural gas. Such a process produces a syngas rich in hydrogen that has to be purified to be properly used in low temperature fuel cells. However, the hydrogen production and purification processes strongly affect the performance, the cost, and the complexity of the energy system.Purification is usually performed through pressure swing adsorption, which is a semi-batch process that increases the plant complexity and incorporates a substantial efficiency penalty. A promising alternative option for hydrogen purification is the use of selective metal membranes that can be integrated in the reactors of the fuel processing plant. Such a membrane separation may improve the thermo-chemical performance of the energy system, while reducing the power plant complexity, and potentially its cost. Herein, we perform a technical analysis, through thermo-chemical models, to evaluate the integration of Pd-based H2-selective membranes in different sections of the fuel processing plant: (i) steam reforming reactor, (ii) water gas shift reactor, (iii) at the outlet of the fuel processor as a separator device. The results show that a drastic fuel processing plant simplification is achievable by integrating the Pd-membranes in the water gas shift and reforming reactors. Moreover, the natural gas reforming membrane reactor yields significant efficiency improvements.  相似文献   

17.
为有效回收熔融碳酸盐燃料电池产生的余热,提出一种由熔融碳酸盐燃料电池(MCFC)、两级并联温差发电器(TTEG)和回热器组合而成的混合系统模型。考虑MCFC电化学反应中的过电势损失和混合系统中的不可逆损失,通过数值分析得出混合系统的输出功率和效率的数学表达式,获得混合系统的一般性能特征,讨论MCFC电流密度与温差发电器的无量纲电流之间的关系,确定混合系统的优化工作电流区间。结果表明,该混合系统的功率密度和效率分别比单一的MCFC系统提高46.9%和35.0%。此外,考虑了热电材料性能指标等对热电能量转换的影响,为进一步开展燃料电池与两级温差发电器的混合系统的研究提供参考。  相似文献   

18.
燃料电池作为一种高效稳定的分布式清洁能源,其发电技术在电站领域的应用备受关注,而国内燃料电池电站尚在起步阶段,因此对这一领域的研究和实践经验具有重要意义。基于韩国燃气轮机联合循环电站中燃料电池发电项目的实施,介绍了燃料电池的选型,并通过模拟运行确定了最佳余热回收方案。MCFC燃料电池额定发电效率为47%,余热回收后效率提高3.5%。这些经验将对国内未来燃料电池电站的建设起到参考和借鉴意义。  相似文献   

19.
This work considers the use of a Molten Carbonate Fuel Cell (MCFC) system as a power generation and CO2 concentrator unit downstream of the coal burner of an existing production plant. In this way, the capability of MCFCs for CO2 segregation, which today is studied primarily in reference to large-scale plants, is applied to an intermediate-size plant highlighting the potential for MCFC use as a low energy method of carbon capture. A technical feasibility analysis was performed using an MCFC system-integrated model capable of determining steady-state performance across varying feed composition. The MCFC user model was implemented in Aspen Custom Modeler and integrated into the reference plant in Aspen Plus. The model considers electrochemical, thermal, and mass balance effects to simulate cell electrical and CO2 segregation performance. Results obtained suggest a specific energy requirement of 1.41 MJ kg CO2?1 significantly lower than seen in conventional Monoethanolamine (MEA) capture processes.  相似文献   

20.
《Journal of power sources》2006,158(1):455-463
This study analyses hybrid systems combining a molten carbonate fuel cell (MCFC) operating at ambient pressure and a gas turbine. Various possible system layouts, with the major difference among these layouts being the heating method of the turbine inlet gas, are proposed and their design performances are simulated and comparatively analyzed. Power of the MCFC in the hybrid system is explained in terms of the cathode inlet air temperature. Power of the gas turbine differs among various layouts because of large difference in the turbine inlet temperature. The direct firing in front of the turbine allows far higher turbine inlet temperature, and thus greater gas turbine power than the indirect heating of the inlet gas. The optimum pressure ratio of the directly fired system is higher than that of the indirectly fired system. The directly fired system allows not only much larger system power and higher optimum efficiency but also greater flexibility in the selection of the design pressure ratio of the gas turbine. In addition, the directly fired system can better accommodate the specifications of both current micro gas turbines and advanced gas turbines than the indirectly fired system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号