首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The paper deals with the inverse determination of heat sources in steady 2-D heat conduction problem. The problem is described by Poisson equation in which the function of the right hand side is unknown. The identification of the strength of a heat source is given by using the boundary condition and a known value of temperature in chosen points placed inside the domain. For the solution of the inverse problem of identification of the heat source the method of fundamental solution with radial basis functions is proposed. The accurate results have been obtained for five test problems where the analytical solutions were available.  相似文献   

2.
This paper deals with the effect of the temperature dependent thermal conductivity on transient conduction and radiation heat transfer in a 2-D rectangular enclosure containing an absorbing, emitting and scattering medium. The thermal conductivity of the medium is assumed to vary linearly with temperature. The radiative part of the energy equation was solved using the collapsed dimension method. To facilitate solution of the energy equation, which is a highly nonlinear one, time linearization was done first and then the equation was solved using the alternating direction implicit scheme. Results for the effects of the variable thermal conductivity were found for temperature and heat flux distributions.  相似文献   

3.
In an earlier paper [1], a simple model for investigating heat conduction in materials of irregular shapes having heterogeneous thermal conductivity was presented. In this method, referred to as the Effective Parameter for Interfacial cells (dubbed as EPIC) [2], the material is tessellated into cells (square or cubes), a cell with non-uniform thermal conductivity inside it is replaced by a cell with an effective uniform conductivity, and the heat conduction equation is then solved numerically by discretizing in time and space. The implementation of EPIC on a massively parallel SIMD machine (MasParMP-1) is described. Sample results are shown for 2-D and 3-D materials.  相似文献   

4.
This article deals with the solution of conduction–radiation heat transfer problem involving variable thermal conductivity and variable refractive index. The discrete transfer method has been used for the determination of radiative information for the energy equation that has been solved using the lattice Boltzmann method. Radiatively, medium is absorbing, emitting and scattering. To validate the formulation, transient conduction and radiation heat transfer in a planar participating medium has been considered. For constant thermal conductivity and constant and variable refractive indices, results have been compared with those available in the literature. Effects of conduction–radiation parameter and scattering albedo on temperature have been studied for variable thermal conductivity and constant and/or variable refractive index. Lattice Boltzmann method and the discrete transfer method have been found to successfully deal with the complexities introduced due to variable thermal conductivity and variable refractive index.  相似文献   

5.
In this paper, meshless element free Galerkin (EFG) method has been extended to obtain the numerical solution of nonlinear, unsteady heat transfer problems with temperature dependent material properties. The thermal conductivity, specific heat and density of the material are assumed to vary linearly with the temperature. Quasi-linearization scheme has been used to obtain the nonlinear solution whereas backward difference method is used for the time integration. The essential boundary conditions have been enforced by Lagrange multiplier technique. The meshless formulation has been presented for a nonlinear 3-D heat transfer problem. In 1-D, the results obtained by EFG method are compared with those obtained by finite element and analytical methods whereas in 2-D and 3-D, the results are compared with those obtained by finite element method.  相似文献   

6.
In this work a direct integration method is proposed to estimate temperature-dependent thermal conductivity in a one-dimensional heat conduction domain without internal measurements. By approximating the spatial temperature distribution in the domain as a third-order polynomial of position and by integrating the heat conduction equation over the spatial and temporal domain, the present method estimates the thermal conductivity directly. Also, this method does not require any prior information on the functional form of the thermal conductivity. Some illustrative examples are examined to verify the proposed approach. The proposed approach may also be useful to make sufficiently accurate initial guesses for sophisticated algorithms usually based on iterative refinement scheme.  相似文献   

7.
Knowledge of the temperature dependency of the physical properties such as surface emissivity, which controls the radiative problem, is fundamental for determining the thermal balance of many scientific and industrial processes. The surface emissivity generally depends on surface temperature, wavelength, surface material geometry (curvature, roughness), and direction of observation, and often changes with oxidation, melting, coating, and even surface pollution. Current work studies the influences of temperature dependency of surface emissivity on heat transfer in a lumped system. The problem was investigated for both one-dimensional (1-D) and two-dimensional (2-D) systems. For 1-D equations, two recent analytical methods called the homotopy perturbation method (HPM) and parameterized perturbation method (PPM) are presented. Unlike classic perturbation methods, these techniques do not need small parameters for nonlinear heat transfer equations. Thus, we can apply them for large values of surface emissivity. For the 2-D domain, a finite-element code is used to obtain the unsteady distribution of temperature. Three different functions were chosen to describe the thermal behavior of surface emissivity. The solutions of 1-D nonlinear equations are compared with the accurate numerical fourth-order Runge–Kutta method, and excellent agreement (maximum error of 0.0021%) was observed. The capabilities of employed analytical methods are discussed and it is shown that HPM needs fewer series terms in comparison with PPM. For both 1-D and 2-D equations, it is illustrated that the temperature gradient increased by adding to the order of emissivity variation versus temperature.  相似文献   

8.
The Taylor series approximation is developed for the inverse estimation of thermal conductivity in a one-dimensional domain. The differential governing equation of heat conduction is converted to a discrete system of linear equations in matrix form using the temperature measurement and heat generation at the grid points as well as surface heat flux. The unknown thermal conductivity is estimated by solving the linear algebraic equations directly without iterations. The features of the present method are that no prior information about the functional form of the thermal conductivity is required, nor are any initial guesses or iterations in the calculation process needed. The accuracy and robustness of the present method are verified by comparing the results with the analytical solutions for constant, spatial- and temperature-dependent thermal conductivities. The results show that the inverse solutions are in good agreement with the exact solutions.  相似文献   

9.
Thermal performance of vacuum glazing predicted by using two-dimensional (2-D) finite element and three-dimensional (3-D) finite volume models are presented. In the 2-D model, the vacuum space, including the pillar arrays, was represented by a material whose effective thermal conductivity was determined from the specified vacuum space width, the heat conduction through the pillar array and the calculated radiation heat transfer between the two interior glass surfaces within the vacuum gap. In the 3-D model, the support pillar array was incorporated and modelled within the glazing unit directly. The predicted difference in overall heat transfer coefficients between the two models for the vacuum window simulated was less than 3%. A guarded hot box calorimeter was used to determine the experimental thermal performance of vacuum glazing. The experimentally determined overall heat transfer coefficient and temperature profiles along the central line of the vacuum glazing are in very good agreement with the predictions made using the 2-D and 3-D models.  相似文献   

10.
The paper presents exact analytical solutions of one-dimensional periodic heat conduction through an inhomogeneous slab for a certain class of thermal conductivity profiles (including linear and exponential). The exact analytical solutions for some of these profiles have been compared with those obtained by considering the slab to be made up of a number of homogeneous layers with different thermal conductivities varying from layer to layer and using the layered structure (or matrix multiplication) method. The numerical results arrived at by the layered-structure method converge rapidly (with increasing number of layers considered) to the values obtained from the exact analytical solutions. This gives confidence in the application of the layered-structure method to periodic heat conduction through inhomogeneous slabs. The numerical results have been presented in the form of elements of a 2 × 2 matrix, relating the sinusoidal steady-state temperature and heat flux on the two sides of the slab.  相似文献   

11.
The paper presents exact analytical solutions for periodic radial heat conduction through an inhomogeneous hollow circular cylinder for a certain class of thermal conductivity profile. The exact analytical solutions for some of these profiles (including linear and quadratic) are compared with those obtained by considering the cylindrical medium to be made up of a number of homogeneous layers with different thermal conductivities, varying from layer to layer, and using the layered-structure (or matrix-multiplication) method. The numerical results arrived at by the layered-structure method converge rapidly (with increasing number of layers considered) to the values obtained from the exact analytical solutions. This gives confidence in the application of the layered-structure method to periodic heat conduction through an inhomogeneous hollow cylinder. Assuming the inhomogeneous hollow cylinder to be made up of a number of cylindrical layers with a linear profile of thermal conductivity has also been shown to be a more effective alternative method of considering any type of inhomogeniety; it saves computation time, as the rate of converegence is much higher than for the homogeneous-layer structure method. Numerical results are presented in the form of elements of a 2 × 2 matrix, relating the sinusoidal steady-state temperature and the heat flux on the two sides of the cylinder.  相似文献   

12.
In this paper we are concerned with the estimation of temperature-dependent thermal conductivity of a one-dimensional inverse heat conduction problem. First, we construct a one-step group-preserving scheme (GPS) for the semi-discretization of quasilinear heat conduction equation, and then derive a quasilinear algebraic equation to determine the unknown thermal conductivity under a given initial temperature and a measured temperature perturbed by noise at time T. The new method does not require any prior information on the functional form of thermal conductivity. Several examples are examined to show that the new approach has high accuracy and efficiency, and the number of iterations spent in solving the quasilinear algebraic equation is smaller than five even in a large temperature range.  相似文献   

13.
A new radial integration boundary element method (RIBEM) for solving transient heat conduction problems with heat sources and variable thermal conductivity is presented in this article. The Green’s function for the Laplace equation is served as the fundamental solution to derive the boundary-domain integral equation. The transient terms are first discretized before applying the weighted residual technique that is different from the previous RIBEM for solving a transient heat conduction problem. Due to the strategy for dealing with the transient terms, temperature, rather than transient terms, is approximated by the radial basis function; this leads to similar mathematical formulations as those in RIBEM for steady heat conduction problems. Therefore, the present method is very easy to code and be implemented, and the strategy enables the assembling process of system equations to be very simple. Another advantage of the new RIBEM is that only 1D boundary line integrals are involved in both 2D and 3D problems. To the best of the authors’ knowledge, it is the first time to completely transform domain integrals to boundary line integrals for a 3D problem. Several 2D and 3D numerical examples are provided to show the effectiveness, accuracy, and potential of the present RIBEM.  相似文献   

14.
The finite volume approach is developed for the inverse estimation of thermal conductivity in one-dimensional domain. The differential governing equation of heat conduction is converted to a system of linear equations in matrix form using the temperature data and heat generation at the discrete grid points as well as surface heat flux. The unknown thermal conductivities are obtained by solving the system equations directly. The features of the present method are that no prior information about the functional form of the thermal conductivity is required and no iterations in the calculation process are needed. The accuracy and robust of the present method are verified by comparing examples of inverse estimation of spatially and temperature-dependent thermal conductivities with the exact solutions.  相似文献   

15.
The influence of the thermal sensitivity of pad and disk materials on temperature at braking is under investigation. A mathematical model of process of frictional heating in a pad–disk brake system, which takes into account the temperature-sensitive materials, is proposed. The basic element of this model is the thermal problem of friction—a one-dimensional boundary-value heat conduction problem with temperature-dependent thermal conductivity and specific heat. Contrary to the prior studies of authors, where a simple nonlinearity was considered, in this article the arbitrary nonlinearity of the thermophysical properties of materials is studied. The solution of a nonlinear boundary-value heat conduction problem is obtained by the method of successive approximations. The numerical analysis of temperature is executed for some materials of a pad and a disk with and without taking into account their thermal sensitivity.  相似文献   

16.
This article develops the analytical rigorous solution of a fundamental problem of heat conduction in anisotropic media. The steady-state temperature and heat flux fields in a thin-layer medium with anisotropic properties subjected to concentrated embedded heat sources or prescribed temperature on the surface are analyzed. A linear coordinate transformation is used to transform anisotropic thin-layer problems into equivalent isotropic problems without complicating the geometry and boundary conditions of the problem. By using the Fourier transform and the series expansion technique, exact closed-form solutions of the specific problems are presented in series forms. The complete solutions of heat conduction problems for the thin-layer medium consist only of the simplest solutions for an infinite homogeneous medium with concentrated heat sources. The numerical results of the temperature and heat flux distributions are provided in full-field configurations.  相似文献   

17.
The time-dependent frictional heating of a disc with applied thermal barrier coating (TBC) on its working surface was investigated. To determine the temperature fields in the coating and the disc a one-dimensional friction heat problem during braking was formulated, with taking into account the dependence of thermal properties of materials from temperature. A model was adopted for materials with a simple non-linearity, i.e. materials whose thermal conductivity and specific heat are temperature dependent, and their ratio – thermal diffusivity is constant. The linearization of the corresponding boundary-value heat conduction problem was made by the Kirchhoff transformation and the linearizing multipliers method. A numerical-analytical solution to the obtained problem was found by Laplace transform method. Knowing the temperature distributions, quasi-static thermal stresses in the strip (TBC) with taking into account change in temperature mechanical properties, were determined. The distribution of temperature and thermal stresses in the strip made from ZrO2 deposited on the UNS G51400 steel disc, was investigated.  相似文献   

18.
保温材料热物性测试的实验及数值研究   总被引:1,自引:0,他引:1  
针对保温材料导热系数低,采用常规的导热系数测试方法难以获得准确结果的问题,根据瞬态法导热系数测试原理,对常功率平面热源法进行了研究。建立传热的二维瞬态数学模型,借助FLUENT有限体积软件对常功率平面热源法中试样的温度分布和热量传递规律进行数值模拟,开发了一套保温材料导热系数测试装置。测试结果与文献数据能较好的吻合,最大误差不超过4%。测试结果可靠,测试精度较高。  相似文献   

19.
An approximate analytical solution method for thermal stresses in an annular fin with variable thermal conductivity is presented. Homotopy perturbation method (HPM) is employed to estimate the non-dimensional temperature field by solving nonlinear heat conduction equation. The closed-form solutions for the thermal stresses are formulated using the classical thermoelasticity theory coupled with HPM solution for temperature field. The plane state of stress conditions are considered in this study. The effects of thermal parameters such as variable thermal conductivity parameter (β), thermogeometric parameter (K), and the non-dimensional coefficient of thermal expansion (χ) on the temperature field and stress field are studied. The results for temperature field and stress field obtained from HPM-based solution are found to be in very close agreement with the results available in literature. Furthermore, the HPM solution is found to be very efficient and handles nonlinear heat transfer equation with greater convenience.  相似文献   

20.
Approximate but highly accurate solutions for the temperature distribution, fin efficiency, and optimum fin parameter for a constant area longitudinal fin with temperature dependent internal heat generation and thermal conductivity are derived analytically. The method of least squares recently used by the authors is applied to treat the two nonlinearities, one associated with the temperature dependent internal heat generation and the other due to temperature dependent thermal conductivity. The solution is built from the classical solution for a fin with uniform internal heat generation and constant thermal conductivity. The results are presented graphically and compared with the direct numerical solutions. The analytical solutions retain their accuracy (within 1% of the numerical solution) even when there is a 60% increase in thermal conductivity and internal heat generation at the base temperature from their corresponding values at the sink temperature. The present solution is simple (involves hyperbolic functions only) compared with the fairly complex approximate solutions based on the homotopy perturbation method, variational iteration method, and the double series regular perturbation method and offers high accuracy. The simple analytical expressions for the temperature distribution, the fin efficiency and the optimum fin parameter are convenient for use by engineers dealing with the design and analysis of heat generating fins operating with a large temperature difference between the base and the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号