首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we conduct energy and exergy analyses of the magnesium-chlorine (Mg-Cl) thermochemical cycle for hydrogen production and examine the respective cycle energy and exergy efficiencies. We also undertake a parametric study to investigate how the overall cycle performance is affected by changing the reference environment temperature and operating conditions. The results show that Mg-Cl cycle offers a good potential due to its high energy and exergy efficiencies as 63.63% and 34.86%, respectively, based upon the conditions and parameters considered. In this regard, Mg-Cl cycle appears to be a promising low temperature thermochemical cycle. It may, therefore, compete with other low temperature thermochemical and hybrid cycles such as the copper–chlorine cycle.  相似文献   

2.
Analysis and performance assessment of a solar driven hydrogen production plant running on an Mg–Cl cycle, are conducted through energy and exergy methods. The proposed system consists of (a) a concentrating solar power cycle with thermal energy storage, (b) a steam power plant with reheating and regeneration, and (c) a hybrid thermochemical Mg–Cl hydrogen production cycle. The results show that higher steam to magnesium molar ratios are required for full yield of reactants at the hydrolysis step. This ratio even increases at low temperatures, although lowering the highest temperatures appears to be more favorable for linking such a cycle to lower temperature energy sources. Reducing the maximum cycle temperature decreases the plant energy and exergy efficiencies and may cause some undesirable reactions and effects. The overall system energy and exergy efficiencies are found to be 18.8% and 19.9%, respectively, by considering a solar heat input. These efficiencies are improved to 26.9% and 40.7% when the heat absorbed by the molten salt is considered and used as a main energy input to the system. The highest exergy destruction rate occurs in the solar field which accounts for 79% of total exergy destruction of the integrated system.  相似文献   

3.
The present study is related with the thermodynamic performance assessment of renewable hydrogen production through Boron thermochemical water splitting cycle. Therefore, all step efficiencies and overall cycle efficiency are calculated based on complete reaction. Additionally, a parametric study is conducted to determine the effect of the reference environment temperature on the overall cycle efficiency. In this regard, exergy efficiencies, exergy destruction rates and also inlet and outlet exergy rates of the cycle are calculated and presented for various reference temperatures. The exergy efficiency of the cycle is calculated as 0.4393 based on complete reaction and occurs at 298 K. This study has shown that Boron thermochemical water splitting cycle has a great potential due to cycle performance. As a result, Boron based thermochemical water splitting cycle can help achieve better environment and sustainability due to high exergetic efficiency. By the way, economic and technical issues of the storage and transportation of the hydrogen can find a proper solution if the hydrogen production reaction of the Boron thermochemical water splitting cycle takes place on-board of a vehicle.  相似文献   

4.
The thermochemical CuCl cycle has received greater attention by numerous researchers during the past decade as a promising hydrogen production method because of some operational advantages. The present paper analyzes three different configurations of the CuCl thermochemical cycle, namely three, four and five step ones thermodynamically. Some comparative parametric studies are conducted in order to investigate the overall energy and exergy efficiencies of the cycles considered. The Aspen plus is the software tool employed for the modeling and simulation of the cycles. The energy and exergy efficiencies of the five-step CuCl cycle are found to be 38.8% and 70.2% while the three-step CuCl cycle has an energy efficiency of 39.6% and an exergy efficiency of 68.1%, respectively. On the other hand, the four-step CuCl cycle provides the highest energy and exergy efficiencies of 41.9% and 75.7%. A parametric study is also conducted to investigate the effect of varying ambient temperature on the exergy efficiencies of all three cycles. The present study results further reveal that the cycle performance can be enhanced by improving the thermal management and reducing the exergy destructions.  相似文献   

5.
In this paper, energy and exergy analyses of the geothermal-based hydrogen production via thermochemical water decomposition using a new, four-step copper–chlorine (Cu–Cl) cycle are conducted, and the respective cycle energy and exergy efficiencies are examined. Also, a parametric study is performed to investigate how each step of the cycle and its overall cycle performance are affected by reference environment temperatures, reaction temperatures, as well as energy efficiency of the geothermal power plant itself. As a result, overall energy and exergy efficiencies of the cycle are found to be 21.67% and 19.35%, respectively, for a reference case.  相似文献   

6.
Using solid oxide membrane, this paper presents the theoretical modeling of the high temperature electrolysis of hydrogen bromide gas for hydrogen production. The electrolysis of hydrogen halides such as hydrogen bromide is an attractive process, which can be coupled to hybrid thermochemical cycles. The high temperature electrolyzer model developed in the present study includes concentration, ohmic, and activation losses. Exergy efficiency, as well as energy efficiency parameters, are used to express the thermodynamic performance of the electrolyzer. Moreover, a detailed parametric study is performed to observe the effects of various parameters such as current density and operating temperature on the overall system behavior. The results show that in order to produce 1 mol of hydrogen, 1.1 V of the applied potential is required, which is approximately 0.8 V less compared to high temperature steam electrolysis under same conditions (current density of 1000 A/m2 and temperature of 1073 K). Furthermore, it is found that with the use of the presented electrolyzer, one can achieve energy and exergy efficiencies of about 56.7% and 53.8%, respectively. The results presented in this study suggest that, by employing the proposed electrolyzer, two-step thermochemical cycle for hydrogen production may become more attractive especially for nuclear- and concentrated solar-to-hydrogen conversion applications.  相似文献   

7.
An integrated lab-scale copper-chlorine (Cu-Cl) thermochemical cycle for hydrogen production at the University of Ontario Institute of Technology (UOIT) is presented and analyzed in this paper. In a practical operation of the Cu-Cl cycle, besides the main steps of hydrolysis, thermolysis, electrolysis and drying, the oxidized anolyte (consumed anolyte at the electrolyzer cell) needs to be recycled to be concentrated sufficiently for the electro-chemical process. Recycling of the oxidized anolyte through the separation processes is achieved by distillation of anolyte, drying unit, separation cell, pressure swing distillation and CuCl2 concentrator. This study examines the thermodynamic performance of all unit operations in the lab-scale Cu-Cl cycle. A process simulation model with Aspen Plus is used to assess the system by energy and exergy analyses. For the specific system design characteristics, the cycle is capable of producing 100 L/h of hydrogen. From the simulation results, the overall energy and exergy efficiencies of the lab-scale Cu-Cl cycle are determined to be 11.6% and 34.9%, respectively. Furthermore, after the thermolysis and hydrolysis reactors, the quench cell and CuCl2 concentrator have the highest exergy losses with thermal energy transferred through CuCl solidification and water vaporization phase-change processes at relatively high temperature. Additional results of the processes are presented and discussed.  相似文献   

8.
Geothermal‐based hydrogen production, which basically uses geothermal energy for hydrogen production, appears to be an environmentally conscious and sustainable option for the countries with abundant geothermal energy resources. In this study, four potential methods are identified and proposed for geothermal‐based hydrogen production, namely: (i) direct production of hydrogen from the geothermal steam, (ii) through conventional water electrolysis using the electricity generated through geothermal power plant, (iii) by using both geothermal heat and electricity for high temperature steam electrolysis and/or hybrid processes, and (iv) by using the heat available from geothermal resource in thermochemical processes. Nowadays, most researches are focused on high‐temperature electrolysis and thermochemical processes. Here we essentially discuss some potential low‐temperature thermochemical and hybrid cycles for geothermal‐based hydrogen production, due to their wider practicality, and examine them as a sustainable option for hydrogen production using geothermal heat. We also assess their thermodynamic performance through energy and exergy efficiencies. The results show that these cycles have good potential and attractive overall system efficiencies over 50% based on a complete reaction approach. The copper‐chlorine cycle is identified as a highly promising cycle for geothermal‐hydrogen production. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, a theoretical and experimental study on a novel cobalt-chlorine thermochemical cycle for hydrogen production is presented. The cobalt-chlorine cycle comprises a closed loop of four thermochemical reactions occurring at 700 °C that is a reaction temperature compatible with the present generation of high-temperature gas-cooled reactors. Firstly, a thermodynamic analysis was done for determining whether this cycle is attractive for hydrogen production in terms of both energy and exergy efficiencies. Following, proof-of-principle experiments were carried out at laboratory scale in a batch reactor at temperatures in the range from 550 °C to 950 °C and holding times between 1 h and 72 h. Experimental results complemented by the characterization of condensed compounds deposited on the reactor walls allowed confirm the reaction pathway of thermochemical reactions originally proposed, define the slowest step of the global process, and explain the beneficial effect of increasing the system pressure on the hydrogen yield. Even both performance assessment and proof-of-principle experimental results look like promising more research will be required in the future to confirm these preliminary findings. Finally, a modified version of the cobalt-chlorine cycle is proposed for enhancing the global kinetics, based on the experimental evidence found in the proof-of-principle tests.  相似文献   

10.
The present study develops a new solar energy system integrated with a Mg–Cl thermochemical cycle for hydrogen production and analyzes it both energetically and exergetically for efficiency assessment. The solar based integrated Mg–Cl cycle system considered here consists of five subsystems, such as: (i) heliostat field subsystem, (ii) central receiver subsystem, (iii) steam generation subsystem, (iv) conventional power cycle subsystem and (v) Mg–Cl subsystem. Also, the inlet and outlet energy and exergy rates of all of subsystems are calculated and illustrated accordingly. We also undertake a parametric study to investigate how the overall system performance is affected by the reference environment temperature and operating conditions. As a result, the overall energy and exergy efficiencies of the considered system are found to be 18.18% and 19.15%, respectively. The results show that the Mg–Cl cycle has good potential and attractive overall cycle efficiencies over 50%.  相似文献   

11.
The cyclability of Mn2O3/MnO thermochemical cycle for solar hydrogen production has been experimentally evaluated. The results of three consecutive cycles show a stable hydrogen production per mass of initial solid that is in agreement with the maximum expected amount according to the stoichiometry of the process. The characterization of the material recovered after each cycle shows a mixture of different manganese oxide phases that are completely converted into MnO in the subsequent thermal reduction, maintaining the productivity of the cycles. Based on that, a modification of the thermochemical cycle scheme is proposed taking into account the differences observed between the first cycle and the following ones. MnO2/MnO thermochemical cycle appears as a promising alternative, working in the same temperature range but with a theoretical hydrogen production per unit mass of solid manganese oxide almost twice than that obtained with the conventional Mn2O3/MnO cycle. Finally, the results of exergy efficiency of the complete cycle give new insights into the commercial possibilities of the cycle for hydrogen production, demonstrating the sustainable cyclability of the process regarding the manganese containing materials at lower temperatures than those theoretically reported in literature and consequently with higher exergy efficiencies that the common values associated to this cycle.  相似文献   

12.
In the presented paper, energy and exergy analysis is performed for thermochemical hydrogen (H2) production facility based on solar power. Thermal power used in thermochemical cycles and electricity production is obtained from concentrated solar power systems. In order to investigate the effect of thermochemical cycles on hydrogen production, three different cycles which are low temperature Mg–Cl, H2SO4 and UT-3 cycles are compared. Reheat-regenerative Rankine and recompression S–CO2 Brayton power cycles are considered to supply electricity needed in the Mg–Cl and H2SO4 thermochemical cycles. Furthermore, the effects of instant solar radiation and concentration ratio on the system performance are investigated. The integration of S–CO2 Brayton power cycle instead of reheat-regenerative Rankine enhances the system performance. The maximum exergy efficiency which is obtained in the system with Mg–Cl thermochemical and recompression S–CO2 Brayton power cycles is 27%. Although the energy and exergy efficiencies decrease with the increase of the solar radiation, they increase with the increase of the concentration ratio. The highest exergy destruction occurred in the solar energy unit.  相似文献   

13.
In this study, nuclear energy based hydrogen and ammonia production options ranging from thermochemical cycles to high-temperature electrolysis are comparatively evaluated by means of the life cycle assessment (LCA) tool. Ammonia is produced by extracting nitrogen from air and hydrogen from water and reacting them through nuclear energy. Since production of ammonia contributes about 1% of global greenhouse gas (GHG) emissions, new methods with reduced environmental impacts are under close investigation. The selected ammonia production systems are (i) three step nuclear Cu–Cl thermochemical cycle, (ii) four step nuclear Cu–Cl thermochemical cycle, (iii) five step nuclear Cu–Cl thermochemical cycle, (iv) nuclear energy based electrolysis, and (v) nuclear high temperature electrolysis. The electrolysis units for hydrogen production and a Haber–Bosch process for ammonia synthesis are utilized for the electrolysis-based options while hydrogen is produced thermochemically by means of the process heat available from the nuclear power plants for thermochemical based hydrogen production systems. The LCA results for the selected ammonia production methods show that the nuclear electrolysis based ammonia production method yields lower global warming and climate change impacts while the thermochemical based options yield higher abiotic depletion and acidification values.  相似文献   

14.
A solar-wind hybrid trigeneration system is proposed and analyzed thermodynamically through energy and exergy approaches in this paper. Hydrogen, electricity and heat are the useful products generated by the hybrid system. The system consists of a solar heliostat field, a wind turbine and a thermochemical copper-chlorine (Cu-Cl) cycle for hydrogen production linked with a hydrogen compression system. A solar heliostat field is employed as a source of thermal energy while the wind turbine is used to generate electricity. Electric power harvested by the wind turbine is supplied to the electrolyzer and compressors and provides an additional excess of electricity. Hydrogen produced by the thermochemical copper-chlorine (Cu-Cl) cycle is compressed in a hydrogen compression system for storage purposes. Both Aspen Plus 9.0 and EES are employed as software tools for the system modeling and simulation. The system is designed to achieve high hydrogen production rate of 455.1 kg/h. The overall energy and exergy efficiencies of the hybrid system are 49% and 48.2%, respectively. Some additional results about the system performance are obtained, presented and discussed in the paper.  相似文献   

15.
In this paper, a new renewable energy-based cogeneration system for hydrogen and electricity production is developed. Three different methods for hydrogen production are integrated with Rankine cycle for electricity production using solar energy as an energy source. In addition, a simple Rankine cycle is utilized for producing electricity. This integrated system consists of solar steam reforming cycle using molten salt as a heat carrier, solar steam reforming cycle using a volumetric receiver reactor, and electrolysis of water combined with the Rankine cycle. These cycles are simulated numerically using the Engineering Equation Solver (EES) based on the thermodynamic analyses. The overall energetic and exergetic efficiencies of the proposed system are determined, and the exergy destruction and entropy generation rates of all subcomponents are evaluated. A comprehensive parametric study for evaluating various critical parameters on the overall performance of the system is performed. The study results show that both energetic and exergetic efficiencies of the system reach 28.9% and 31.1%, respectively. The highest exergy destruction rates are found for the steam reforming furnace and the volumetric receiver reforming reactor (each with about 20%). Furthermore, the highest entropy generation rates are obtained for the steam reforming furnace and the volumetric receiver reforming reactor, with values of 174.1 kW/K and 169.3 kW/K, respectively. Additional parametric studies are undertaken to investigate how operating conditions affect the overall system performance. The results report that 60.25% and 56.14% appear to be the highest exergy and energy efficiencies at the best operating conditions.  相似文献   

16.
Exergetic life cycle assessment (ExLCA) is applied with life cycle assessment (LCA) to a hydrogen production process. This comparative environmental study examines a nuclear-based hydrogen production via thermochemical water splitting using a copper–chlorine cycle. LCA, which is an analytical tool to identify, quantify and decrease the overall environmental impact of a system or a product, is extended to ExLCA. Exergy efficiencies and air pollution emissions are evaluated for all process steps, including the uranium processing, nuclear and hydrogen production plants. LCA results are presented in four categories: acidification potential, eutrophication potential, global warming potential and ozone depletion potential. A parametric study is performed for various plant lifetimes. The ExLCA results indicate that the greatest irreversibility is caused by uranium processing. The primary contributor of the life cycle irreversibility of the nuclear-based hydrogen production process is fuel (uranium) processing, for which the exergy efficiency is 26.7% and the exergy destruction is 2916.3 MJ. The lowest global warming potential per megajoule exergy of hydrogen is 5.65 g CO2-eq achieved a plant capacity of 125,000 kg H2/day. The corresponding value for a plant capacity of 62,500 kg H2/day is 5.75 g CO2-eq.  相似文献   

17.
In this study, four potential methods are identified for geothermal-based hydrogen production, namely, (i) directly from the geothermal steam, (ii) through conventional water electrolysis using the electricity generated from geothermal power plant, (iii) using both geothermal heat and electricity for high temperature steam electrolysis and/or hybrid processes, (iv) using the heat available from geothermal resource in thermochemical processes to disassociate water into hydrogen and oxygen. Here we focus on relatively low-temperature thermochemical and hybrid cycles, due to their greater application possibility, and examine them as a potential option for hydrogen production using geothermal heat. We also present a brief thermodynamic analysis to assess their performance through energy and exergy efficiencies for comparison purposes. The results show that these cycles have good potential and become attractive due to the overall system efficiencies over 50%. The copper–chlorine cycle is identified as a highly promising cycle for geothermal hydrogen production. Furthermore, three types of industrial electrolysis methods, which are generally considered for hydrogen production currently, are also discussed and compared with the above mentioned cycles.  相似文献   

18.
Increasing energy needs and reducing greenhouse gas emissions require immediate studies on carbon-free energy solutions, namely hydrogen. There are numerous methods among the production methods of hydrogen in a green manner. Hydrogen, which is then primarily obtained as a result of the separation of water with thermochemical cycles, is an environmentally friendly and sustainable hydrogen production method. In this study, the Cobalt–Chlorine (Co–Cl) cycle, which is one of the new thermochemical cycles, is examined in detail in terms of thermodynamics. There are four reactions in the Co–Cl thermochemical cycle. These are listed as the hydrolysis reaction in which hydrogen is obtained, the thermolysis reaction in which oxygen is obtained, the reduction reaction and finally the hydrochlorination reaction. According to the results of the analysis performed kinetically with the Aspen Plus software, the exergy efficiency of the cycle is calculated as 33%. When the exergy destruction of all reactions is compared, it is seen that the greatest exergy destruction occurs in the hydrolysis reaction, and the lowest exergy destruction occurs in the hydrochlorination reaction. The fact that the exergy efficiency is high when evaluated in terms of kinetics shows that the cycle is feasible in terms of thermodynamics. In addition, the costs of the cycle are to be considered in the future studies as it is an important criterion.  相似文献   

19.
In this study, a high temperature electrolyser for the gas phase electrolysis of hydrogen chloride for hydrogen production is proposed and assessed. A detailed electrochemical model is developed to study the J-E characteristics for the proposed electrolyser (a solid oxide electrolyser based on a proton conducting electrolyte). The developed model accounts for all major losses, namely activation, concentration and ohmic. Energy and exergy analyses are carried out, and the energy and exergy efficiencies of the proposed electrolyser are determined to be 41.1% and 39.0%, respectively. The simulation results show that at T = 1073 K, P = 100.325 kPa and J = 1000 A/m2, 1.6 V is required to produce 1 mol of hydrogen. This is approximately 0.3 V less than the voltage required by a high temperature steam electrolyser (based on a proton conducting electrolyte) operating at same condition (T = 1073 K, P = 101.325 kPa and J = 1000 A/m2), suggesting that the proposed electrolyser offers a new option for high temperature electrolysis for hydrogen production, potentially with a low electrical energy requirement. The proposed electrolyser may be incorporated into thermochemical cycles for hydrogen production, like CuCl or chlorine cycles.  相似文献   

20.
Hydrogen demand as an energy currency is anticipated to rise significantly in the future, with the emergence of a hydrogen economy. Hydrogen production is a key component of a hydrogen economy. Several production processes are commercially available, while others are under development including thermochemical water decomposition, which has numerous advantages over other hydrogen production processes. Recent advances in hydrogen production by thermochemical water decomposition are reviewed here. Hydrogen production from non-fossil energy sources such as nuclear and solar is emphasized, as are efforts to lower the temperatures required in thermochemical cycles so as to expand the range of potential heat supplies. Limiting efficiencies are explained and the need to apply exergy analysis is illustrated. The copper–chlorine thermochemical cycle is considered as a case study. It is concluded that developments of improved processes for hydrogen production via thermochemical water decomposition are likely to continue, thermochemical hydrogen production using such non-fossil energy will likely become commercial, and improved efficiencies are expected to be obtained with advanced methodologies like exergy analysis. Although numerous advances have been made on sulphur–iodine cycles, the copper–chlorine cycle has significant potential due to its requirement for process heat at lower temperatures than most other thermochemical processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号