首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biomass gasification is an important method to obtain renewable hydrogen. However, this technology still stagnates in a laboratory scale because of its high-energy consumption. In order to get maximum hydrogen yield and decrease energy consumption, this study applies a self-heated downdraft gasifier as the reactor and uses char as the catalyst to study the characteristics of hydrogen production from biomass gasification. Air and oxygen/steam are utilized as the gasifying agents. The experimental results indicate that compared to biomass air gasification, biomass oxygen/steam gasification improves hydrogen yield depending on the volume of downdraft gasifier, and also nearly doubles the heating value of fuel gas. The maximum lower heating value of fuel gas reaches 11.11 MJ/N m3 for biomass oxygen/steam gasification. Over the ranges of operating conditions examined, the maximum hydrogen yield reaches 45.16 g H2/kg biomass. For biomass oxygen/steam gasification, the content of H2 and CO reaches 63.27–72.56%, while the content of H2 and CO gets to 52.19–63.31% for biomass air gasification. The ratio of H2/CO for biomass oxygen/steam gasification reaches 0.70–0.90, which is lower than that of biomass air gasification, 1.06–1.27. The experimental and comparison results prove that biomass oxygen/steam gasification in a downdraft gasifier is an effective, relatively low energy consumption technology for hydrogen-rich gas production.  相似文献   

2.
The biomass for entrained-flow gasification needs to be pretreated to significantly increase its heating value and to make it more readily transportable. The pyrolysis pretreatment was conducted in a lab scale fixed-bed reactor; the reactor was heated to elevate the temperature at 5 °C/min before holding at the desired pyrolysis temperature for 1.5 h a fixed time. The effects of pyrolysis temperature on the yield, composition and heating value of the gaseous, liquid and solid products were determined. The pyrolysis removed most oxygenated constituents of rice straw while significantly increased its energy density. Meantime, it changes the physical properties of biomass powders. The results show that the angle of repose, the angle of internal friction of semi-char decrease obviously; the bulk density of semi-char is bigger than that of biomass. This could favor the feeding of biomass. Considering yield and heating value of the solid semi-char product and the feeding problem, the best pyrolysis temperature was 400 °C. The results of this study have confirmed the feasibility of employing pyrolyzed biomass for entrained-flow gasification; they are useful for the additional studies that will be necessary for designing an efficient biomass entrained-flow gasification system.  相似文献   

3.
The concept of biomass steam gasification offers platform for production (i) of hydrogen, (ii) hydrocarbons and (iii) value added chemicals. Majority of these developments are either in nascent or in pilot/demonstration stage. In this context, there exists potential for hydrogen production via biomass steam gasification. Gaseous products of biomass steam gasification consist of large percentage of CO, CH4 and other hydrocarbons, which can be converted to hydrogen through water‐gas‐shift reaction, steam reforming and cracking respectively. Although there are many previous research works showing the potential of production of hydrogen from biomass in a two stage process, challenges remain in extended biomass and char gasification so as to reduce the amount of carbon in the residual char as well as improve conversion of heavy hydrocarbon condensates to hydrogen rich gas. In the current work, the characteristics of biomass steam gasification in an in‐house designed rotary tubular helical coil reactor at temperatures less than 850 °C, in the presence of superheated steam, were presented. The objectives were to obtain high carbon conversion in the primary biomass steam gasification step (upstream) and high product gas yield and hydrogen yield in the secondary fixed bed catalytic step (downstream). The influence of temperature, steam‐to‐biomass ratio and residence time on product gas yield in the rotary tubular helical coil gasifier was studied in detail using one of the abundantly available biomass sources in India‐rice husk. Further, enhancement of product gas yield and hydrogen yield in a fixed bed catalytic converter was studied and optimized. In the integrated pathway, a maximum gas yield of 1.92 Nm3/kg moisture‐free biomass was obtained at a carbon conversion efficiency of 92%. The maximum hydrogen purity achieved under steady state conditions was 53% by volume with a hydrogen yield of 91.5 g/kg of moisture‐free biomass. This study substantiates overall feasibility of production of high value hydrogen from locally available biomass by superheated steam gasification followed by catalytic conversion. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
The main objective of this paper is to study the effect of design and operating parameters, mainly reactor geometry, equivalence ratio and biomass feeding rate, on the performance of the gasification process of biomass in a three air stage continuous fixed bed downdraft reactor. The gasification of corn straw was carried out in the gasifier under atmospheric pressure, using air as gasifying agent. The results demonstrated that due to the three stage of air supply, a high and uniform temperature was achieved in the oxidation and reduction zones for better tar cracking. The designing of both the air supply system and rotating grate avoided bridging and channeling. The gas composition and tar yield were affected by the parameters including equivalence ratio (ER) and biomass feeding rate. When biomass feeding rate was 7.5 kg/h and ER was 0.25–0.27, the product gas of the gasifier attained a good condition with lower heating value (LHV) about 5400 kJ/m3 and cold gas efficiency about 65%. An increase in equivalence ratio led to higher temperature which in turn resulted in lower tar yield which was only 0.52 g/Nm3 at ER = 0.32. Increasing biomass feeding rate led to higher biomass consumption rate and process temperature. However, excessively high feeding rate was unbeneficial for biomass gasification cracking and reforming reactions, which led to a decrease in H2 and CO concentrations and an increase in tar yield. When ER was 0.27, with an increase of biomass feeding rate from 5.8 kg/h to 9.3 kg/h, the lower heating value decreased from 5455.5 kJ/Nm3 to 5253.2 kJ/Nm3 and tar yield increased from 0.82 g/Nm3 to 2.78 g/Nm3.  相似文献   

5.
This modeling study explores and optimizes the performance of the gasification of a rice husk and low-density polyethylene waste composite utilizing an orthogonal array design of a Taguchi technique. This modeling study uses a signal to noise ratio analysis to optimize the gasification of rice husk and low-density polyethylene waste composite and utilizes an analysis of variance approach to identify the most important factors contributing to the process. It is shown that the composition ratio of rice husk and polyethylene waste contributes significantly to the gasification performance. Increasing composition ratio of rice husk and polyethylene waste improves hydrogen concentration, decreases carbon dioxide concentration and enhances carbon monoxide concentration. Energy efficiency is enhanced and normalized carbon dioxide emission is improved by increasing composition ratio of rice husk and polyethylene waste. The gasification of rice husk and low-density polyethylene waste composite is efficient (total energy efficiency of 77.6%) and clean (normalized carbon dioxide emission of 2.1 g/mol, based on the composite entering the system) at its multi-objective optimum conditions. The research results support the development of a system for gasification of biomass and plastic waste composites utilizing orthogonal array design of a Taguchi approach.  相似文献   

6.
The air–steam catalytic gasification of rice husk for hydrogen-rich gas production was experimentally investigated in a combined fixed bed reactor with the newly developed nano-NiO/γ-Al2O3 catalyst. A series of experiments have been performed to explore the effects of catalyst presence, catalytic reactor temperature, the equivalence ratio (ER), and steam to biomass ratio (S/B) on the composition and yield of gasification gases. The experiments demonstrated that the developed nano-NiO/γ-Al2O3 catalyst had a high activity of cracking tar and hydrocarbons, upgrading the gas quality, as well as yielding a high hydrogen production. Catalytic temperature was crucial for the overall gasification process, a higher temperature contributed to more hydrogen production and gas yield. Varying ER demonstrated complex effects on rice husk gasification and an optimal value of 0.22 was found in the present study. Compared with biomass catalytic gasification under air only, the introduction of steam improved the gas quality and yield. The steam/biomass ratio of 1.33 was found as the optimum operating condition in the air–steam catalytic gasification.  相似文献   

7.
This paper investigates the integrated catalytic adsorption (ICA) steam gasification of palm kernel shell for hydrogen rich gas production using pilot scale fluidized bed gasifier under atmospheric condition. The effect of temperature (600–750 °C) and steam to biomass ratio (1.5–2.5 wt/wt) on hydrogen (H2) yield, product gas composition, gas yield, char yield, gasification and carbon conversion efficiency, and lower heating values are studied. The results show that H2 hydrogen composition of 82.11 vol% is achieved at temperature of 675 °C, and negligible carbon dioxide (CO2) composition is observed at 600 °C and 675 °C at a constant steam to biomass ratio of 2.0 wt/wt. In addition, maximum H2 yield of 150 g/kg biomass is observed at 750 °C and at steam to biomass ratio of 2.0 wt/wt. A good heating value of product gas which is 14.37 MJ/Nm3 is obtained at 600 °C and steam to biomass ratio of 2.0 wt/wt. Temperature and steam to biomass ratio both enhanced H2 yield but temperature is the most influential factor. Utilization of adsorbent and catalyst produced higher H2 composition, yield and gas heating values as demonstrated by biomass catalytic steam gasification and steam gasification with in situ CO2 adsorbent.  相似文献   

8.
In the present work, the generation of hydrogen rich synthetic gas from fluidized bed steam gasification of rice husk has been studied. An equilibrium model based on equilibrium constant and material balance has been developed to predict the gas compositions. The equilibrium gas compositions are compared with the experimental data of the present group as well as of available literature. The energy and exergy analysis of the process have been carried out by varying steam to biomass ratio (ψ) within the range between 0.1-1.5 and gasification temperature from 600 °C to 900 °C. It is observed that both the energy and exergy efficiencies are maximum at the CBP (carbon boundary point) though the hydrogen production increases beyond the CBP. The HHV (higher heating value) and the external energy input both continuously increase with ψ. However, the hydrogen production initially increases with increase in temperature up to 800 °C and then becomes nearly asymptotic. The HHV decreases rapidly with increase in temperature and energy input increases. Therefore, gasification in lower temperature region is observed to be economical in terms of a trade off between external energy input and HHV of the product gas.  相似文献   

9.
《能源学会志》2020,93(4):1261-1270
The chemical looping gasification (CLG) of rice husk was conducted in a fixed bed reactor to analyze the effects of the ratio of oxygen carrier to rice husk (O/C), temperature, residence time and preparation methods of Fe-based oxygen carriers. The yield of gas, H2/CO, lower heating value of syngas (LHV), conversion efficiency and performance parameters were analyzed to obtain CLG reaction characterization and optimal reaction conditions. Results showed that when O/C increased from 0.5 to 3.0, the gas production, H2/CO, CO2 yield and carbon conversion efficiency gradually increased, while the yield of H2, CO and CH4 and LHV gradually decreased. At the same time, a highest gasification efficiency was obtained when O/C was 1.5. As increasing temperature, the gas production, CO yield, carbon conversion efficiency and gasification efficiency gradually increased, while the yield of H2, CH4 and CO2, H2/CO and LHV gradually decreased. Sintering and agglomeration was obvious when the temperature was higher than 850 °C. When the reaction time increased from 10 min to 60 min, the gas production, CO yield, carbon conversion efficiency and gasification efficiency gradually increased, but the yield of H2, H2/CO and LHV decreased, among which 30 min was the best reaction residence time. In addition, coprecipitation was the best preparation method among several preparation methods of oxygen carrier. Finally, O/C of 1.5, 800 °C, 30 min and coprecipitation preparation method of oxygen carrier were the optimal parameters to obtain a gasification efficiency of 26.88%, H2 content of 35.64%, syngas content of 56.40%, H2/CO ratio of 1.72 and LHV of 12.25 MJ/Nm3.  相似文献   

10.
《能源学会志》2020,93(5):2084-2095
A novel continuous reactor with shaftless spiral for chemical looping gasification (CLG) of rice husk is expected to propose for application and optimal parameter. Syngas concentration, efficiency, lower heating value of syngas and micromorphology structure were investigated under different conditions of temperature, ratio of OC and rice husk (O/C) and speed. The results indicated that CLG in the shaftless spiral reactor had a better performance. The gas yield, carbon conversion efficiency and gasification efficiency were 73.33%, 63.92% and 98.26% higher than that of fixed-bed reactor, respectively. Further, higher temperature obviously enhanced gas production and efficiency but was easy to cause agglomeration and harmful to OC regeneration. Furthermore, lower O/C would increase the combustible gas production but cause a serious sintering and decrease gas production and carbon conversion efficiency. Moreover, lower speed would promote the gas production and efficiency but cause agglomeration. In addition, lower speed had a greater effect on H2 yield than CO. As a result, the shaftless spiral reactor was beneficial to CLG. The best performance with gas production of 70.99% and gasification efficiency of 67.80% was obtained in shaftless spiral reactor under the optimal parameters with temperature of 800 °C, O/C of 1.5 and speed of 5.5 r/min.  相似文献   

11.
A kinetic model of algae gasification for hydrogen production with air and steam as gasification agent and was developed. The developed model was based on kinetic parameters available in the literature. The objective was to study the effect of critical parameters such as reaction temperature, stoichiometric ratio (SR) and steam flow rate (SFR) on H2/CO ratio in the syngas, hydrogen yield, and lower heating value (LHV) of the produced syngas. Model formulation was validated with experimental results on air-steam gasification of biomass conducted in an atmospheric fluidized bed gasifier. The results showed that higher temperature contributed to lower H2/CO, while higher SFR resulted in higher H2/CO. The LHV of producer gas increased with SFR and gasification temperature.  相似文献   

12.
The gasification characteristics of the rice husk were studied in a cyclone gasifier using air as the gasifying medium to generate the fuel gas with available heating value and less tar content. The influence of equivalence ratio on temperature profiles, composition and low heating value of the produced gas, tar content, carbon conversion and cold gas efficiency was investigated. The equivalence ratios considered in this study were 0.20–0.32. The results show that the optimal equivalence ratio is 0.29 and the maximum temperature of gasification should be lower than 1000 °C. In order to optimize the performance of the cyclone gasifier, the main body of the gasifier was lengthened and air staged gasification was carried out. The low heating value of the produced gas, carbon conversion, cold gas efficiency and tar content are 4.72 MJ/Nm3, 57.5%, 37.3% and 1.85 g/Nm3, respectively.  相似文献   

13.
Hydrogen production through supercritical water gasification (SWG) of biomass has been widely studied. This study reviews the main factors from exergy aspect, and these include feedstock characteristics, biomass concentration, gasification temperature, residence time, reaction catalyst, and reactor pressure. The results show that the exergy efficiencies of hydrogen production are mainly in the range of 0.04–42.05%. Biomass feedstock may affect hydrogen production by changing the H2 yield and the heating value of biomass. Increases in biomass concentrations decrease the exergy efficiencies, increases in gasification temperatures generally increase the exergy efficiencies, and increases in residence times may initially increase and finally decrease the exergy efficiencies. Reaction catalysts also have positive effects on the exergy efficiencies, and the reviewed results show that the effects are followed KOH > K2CO3 > NaOH > Na2CO3. Reactor pressure may have positive, negative or negligible effects on the exergy efficiencies.  相似文献   

14.
Gasification has the potential to convert biomass into gaseous mixtures that can be used for hydrogen production. Thermal gasification and supercritical water gasification are commonly used thermochemical methods for conversion of biomass to hydrogen. Supercritical water gasification handles wet biomass, thus eliminating the capital cost-intensive drying step. Thermal gasification is considered as an alternative means of producing hydrogen from microalgae where biomass has to be dried before gasification. The authors developed techno-economic models for assessment of the production of hydrogen through supercritical gasification and thermal gasification processes. Techno-economic assessment was based on developed process models. Equipment was sized and costs were estimated using the developed process models, and the product value was determined assuming 20 years of plant life. The economic assessment of supercritical water and thermal gasification show that 2000 dry tonnes/day plant requires total capital investments of 277.8 M$ and 215.3 M$ for hydrogen product values of $4.59 ± 0.10/kg and $5.66 ± 0.10/kg, respectively. The relatively higher yield obtained in supercritical water gasification compared to thermal gasification results in lower product value of hydrogen for supercritical water gasification, thereby making it more desirable. This cost of hydrogen is about 4 times the cost of hydrogen from natural gas. The sensitivity analysis indicates that biomass cost and yield are the most sensitive parameters in the economics of the supercritical or thermal gasification process; this signifies the importance of algal biomass availability. The techno-economic assessment helps to identify options for the production of hydrogen fuel through these novel technologies.  相似文献   

15.
In this study, torrefaction of sunflower seed cake and hydrogen production from torrefied sunflower seed cake via steam gasification were investigated. Torrefaction experiments were performed at 250, 300 and 350 °C for different times (10–30 min). Torrefaction at 300 °C for 30 min was selected to be optimum condition, considering the mass yield and energy densification ratio. Steam gasification of lignite, raw- and torrefied biomass, and their blends at different ratios were conducted at downdraft fixed bed reactor. For comparison, gasification experiments with pyrochar obtained at 500 °C were also performed. The maximum hydrogen yield of 100 mol/kg fuel was obtained steam gasification of pyrochar. The hydrogen yields of 84 and 75 mol/kg fuel were obtained from lignite and torrefied biomass, respectively. Remarkable synergic effect exhibited in co-gasification of lignite with raw biomass or torrefied biomass at a blending ratio of 1:1. In co-gasification, the highest hydrogen yield of 110 mol/kg fuel was obtained from torrefied biomass-lignite (1:1) blend, while a hydrogen yield from pyrochar-lignite (1:1) blend was 98 mol/kg. The overall results showed that in co-gasification of lignite with biomass, the yields of hydrogen depend on the volatiles content of raw biomass/torrefied biomass, besides alkaline earth metals (AAEMs) content.  相似文献   

16.
The developed 1-dimensional biomass gasification mathematical model [1] was validated using the experimental results obtained from a circulating fluidized bed biomass gasifier. The reactor was operated on rice husk at various equivalence ratios (ER), fluidization velocities and biomass feed rates. The model gave reasonable predictions of the axial bed temperature profile, syngas composition and lower heating value (LHV), gas production rate, gasification efficiency and overall carbon conversion. The model was also validated by comparing the simulation results with two other different size circulating fluidized beds biomass gasifiers (CFBBGs) using different biomass feedstock, and it was concluded that the developed model can be applied to other CFBBGs using various biomass fuels and having comparable reactor geometries.  相似文献   

17.
This study investigates the comparison of various mineral catalysts on the enhancement of energy yield efficiency with low temperature catalytic gasification of disposable chopsticks. The experiments were carried out in a fluidized bed reactor by controlling the temperature and keeping it within the range of 600 °C–800 °C. The mineral catalysts, such as aluminum silicate, zeolite and calcium oxide (CaO) were used as the experimental catalysts for enhancing energy yield in this research. According to the experimental results, the gasification temperature is a critical factor for improving the gas yield and quality. In general, a higher temperature provides more favorable conditions for thermal cracking and enhances the gas yield and quality. The hydrogen content produced from the tested biomass gasification by various catalysts slightly increased from 11.77% to 14.57%. Furthermore, the lower heating value of synthesis gas increased from 9.28 MJ/Nm3 to 9.62 MJ/Nm3, when the fluidized bed reactor temperature operated at 600 °C and the tested catalysts addition. That is, the catalytic gasification has good energy yield performance for enhancing higher energy content of synthesis gas in a lower-temperature catalytic fluidized bed reactor. Compared with the hydrogen production efficiency, the addition of a calcium based catalyst can reduce bed agglomeration tendency, but it also improves the energy yield in this research.  相似文献   

18.
Prediction of clean hydrogen production via biomass gasification by supervised machine learning algorithms was studied. Lab-scale gasification studies were performed in a steel fixed bed updraft gasifier having a cyclone separator. Pure oxygen, and dried air with varying flow rates (0.05–0.3 L/min) were applied to produce syngas (H2, CH4, CO). Gas compositions were monitored via on-line gas analyzer. Various regression models were created by using different Machine Learning (ML) algorithms which are Linear Regression (LR), K Nearest Neighbors (KNN) Regression, Support Vector Machine Regression (SVMR) and Decision Tree Regression (DTR) algorithms to predict the value of H2 concentration based on the other parameters that are time, temperature, CO, CO2, CH4, O2 and heating value. The highest hydrogen value in syngas was found around 35% vol. after gasification experiments with higher heating value (HHV) of approximately 3400 kcal/m30.05 L/min and 0.015 L/min were the optimum flow rates for dried air and pure oxygen, respectively. In modeling section, it was observed that H2 concentrations were being reflected effectively by the concentrations estimated through the proposed model structures, and by having r2 values of 0.99 which were ascertained between actual and model results.  相似文献   

19.
This paper presents the results from an experimental study on the energy conversion efficiency of producing hydrogen enriched syngas through uncatalyzed steam biomass gasification. Wood pellets were gasified using a 100 kWth fluidized bed gasifier at temperatures up to 850 °C. The syngas hydrogen concentration and cold gas efficiency were found to increase with both bed temperature and steam to biomass weight ratio, reaching a maximum of 51% and 124% respectively. The overall energy conversion to syngas (based on heating value) also increased with bed temperature but was inversely proportional to the steam to biomass ratio. The maximum energy conversion to syngas was found to be 68%. The conversion of energy to hydrogen (by heating value) increased with gasifier temperature and gas residence time, but was found to be independent of the S/B ratio. The maximum conversion of all energy sources to hydrogen was found to be 25%.  相似文献   

20.
Biomass gasification has been a viable alternative for decentralized electricity generation in developing countries. The efficiency of the biomass gasification process for operation of the engine‐generator set is mapped in terms of quality and quantity of the producer gas. In this study, we have attempted to devise generalized correlations for four principal parameters that form the benchmark for the performance of the gasifier. These parameters are lower heating value and net yield (per unit biomass) of producer gas, and volume fractions of CO and CO2 in the gas resulting from biomass gasification process. The correlations have been constituted using simulations of gasification of three common biomass feedstocks (viz. rice husk, saw dust and corn cobs) using semi‐equilibrium non‐stoichiometric thermodynamic model. The independent variables used in the simulations are air ratio, carbon conversion, gasification temperature and three elemental ratios in the gasification mixture, viz. H/C, O/H and O/C. As many as eight expressions of linear and non‐linear type have been evaluated to best fit the simulations data for each performance parameter. On the basis of statistical indicators, the compatibility of the correlations for best fit of the data has been assessed. Finally, the predictions of the correlation have been tested against experimental data on gasification of different biomass. The best correlation for each performance parameter was chosen on the basis of least average absolute error and highest (absolute) regression coefficient. It was found that the set of best correlations could predict the values of performance parameters within engineering accuracy of ± 10–20%. The correlations proposed in this work are independent of the type of biomass gasifier. These correlations can form a useful tool for design and optimization of fixed or fluidized bed gasifier for any biomass feedstock. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号