首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Binder-free NiFe-based electrocatalyst with aligned pore channels has been prepared by freeze casting and served as a bifunctional catalytic electrode for oxygen and hydrogen evolution reaction (OER and HER). The synergistic effects between Ni and Fe result in the high electrocatalytic performance of porous NiFe electrodes. In 1.0 M KOH, porous Ni7Fe3 attains 100 mA cm−2 at an overpotential of 388 mV with a Tafel slope of 35.8 mV dec−1 for OER, and porous Ni9Fe1 exhibits a low overpotential of 347 mV at 100 mA cm−2 with a Tafel slope of 121.0 mV dec−1 for HER. The Ni9Fe1//Ni9Fe1 requires a low cell voltage of 1.69 V to deliver 10 mA cm−2 current density for overall water splitting. The excellent durability at a high current density of porous NiFe electrodes has been confirmed during OER, HER and overall water splitting. The fine electrocatalytic performances of the porous NiFe-based electrodes owing to the three-dimensionally well-connected scaffolds, aligned pore channels, and bimetallic synergy, offering excellent charge/ion transfer efficiency and sizeable active surface area. Freeze casting can be applied to design and synthesize various three-dimensionally porous non-precious metal-based electrocatalysts with controllable multiphase for energy conversion and storage.  相似文献   

2.
In recent years, the exploration of efficient and stable noble-metal-free electrocatalysts is becoming increasingly important, used mainly for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). In this work, a new ultrathin porous Cu1-xNixS/NF nanosheets array was constructed on the 3D nickel skeleton by two-step method: hydrothermal method and vulcanization method. Through these two processes, Cu1-xNixS/NF has a larger specific surface area than that of foamed nickel (NF) and Cu1-xNixO/NF. The Cu1-xNixS/NF materials show excellent catalytic activity by accelerating the electron transfer rate and increase the amount of H2 and O2 produced. The lower overpotential was obtained only 350 mV at 20 mA cm−2 for OER, not only that, but also the same phenomenon is pointed out in HER, optimal Cu1-xNixS/NF presents low overpotentials of 189 mV to reach a current density of 10 mA cm−2 in 1.0 M KOH for HER. Both OER and HER shows a lower Tafel slope: 51.2 mV dec−1 and 127.2 mV dec−1, subsequently, the overall water splitting activity of Cu1-xNixS/NF was investigated, and the low cell voltage was 1.64 V (current density 10 mA cm−2). It can be stable for 14 h during the overall water splitting reaction. These results fully demonstrate that Cu1-xNixS/NF non-precious metal materials can be invoked become one of the effective catalysts for overall water splitting, providing a richer resource for energy storage.  相似文献   

3.
It is an inevitable choice to find efficient and economically-friendly electrocatalysts to reduce the high overpotential of oxygen evolution reaction (OER), which is the key to improve the energy conversion efficiency of water splitting. Herein, we synthesized Cu2S/Ni3S2 catalysts on nickel foam (NF) with different molar ratios of Ni/Cu by a simple two-step hydrothermal method. Cu2S/Ni3S2-0.5@NF (CS/NS-0.5@NF) effectively reduces the overpotential of OER, displaying small overpotentials (237 mV@100 mA cm?2 and 280 mV@500 mA cm?2) in an alkaline solution, along with a low Tafel slope of 44 mV dec?1. CS/NS-0.5@NF also presents an excellent durability at a relatively high current density of 100 mA cm?2 for 100 h. The excellent performance is benefited by the prominent structural advantages and desirable compositions. The nanosheet has a high electrochemical active surface area and the porous structure is conducive to electrolyte penetration and product release. This work provides an economically-friendly Cu-based sulfide catalyst for effective electrosynthesis of OER.  相似文献   

4.
Developing robust non-noble catalysts towards hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is vital for large-scale hydrogen production from electrochemical water splitting. Here, we synthesize Sn- and Fe-containing sulfides and oxyhydroxides anchored on nickel foam (SnFeSxOy/NF) using a solvothermal method, in which a heterostructure is generated between the sulfides and oxyhydroxides. The SnFeSxOy/NF exhibits low overpotentials of 85, 167, 249, and 324 mV at 10, 100, 500 and 1000 mA cm?2 for the HER, respectively, and a low overpotential of only 281 mV at 100 mA cm?2 for the OER. When it serves as both anode and cathode to assemble an electrolyzer, the cell voltage is only 1.69 V at 50 mA cm?2. The sulfides should be the efficient active species for the HER, while the oxyhydroxides are highly active for the OER. The unique sulfide/oxyhydroxide heterostructure facilitates charge transfer and lowers reaction barrier, thus promoting electrocatalytic processes.  相似文献   

5.
The development of non-precious metal-based highly active bi-functional electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is critical factor for making water electrolysis a viable process for large-scale industrial applications. In this study, bi-functional water splitting electrocatalysts in the form of nickel-sulfide/nickel nanoparticles integrated into a three-dimensional N-doped porous carbon matrix, are prepared using NaCl as a porous structure-forming template. Microstructures of the catalytic materials are characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and N2 adsorption-desorption analysis. The most active catalyst synthesized in this study exhibits a low HER overpotential of 70 mV at 10 mA cm−2 and a low Tafel slope of 45 mV dec−1. In OER, the optimized sample performs better than a state-of-the-art RuO2 catalyst and produces an overpotential of 337 mV at 10 mA cm−2, lower than that of RuO2. The newly obtained materials are also used as HER/OER electrocatalysts in a specially assembled two-electrode water splitting cell. The cell demonstrates high activity and good stability in overall water splitting.  相似文献   

6.
Efficient non-noble metal catalysts for the oxygen evolution reaction (OER) are particularly important in the practical applications of electrocatalytic water splitting (ECWS). Herein, based on a simple quasi chemical vapor deposition (Q-CVD) method, we fabricate a newly Ni3S2@3-D graphene free-standing electrode for efficient OER applications. The Ni3S2@3-D graphene integrates the advantageous features of 3-D graphene and Ni3S2 towards OER, such as more interfacial catalytic sites, pore-rich structure, N-doped structure and good electrical conductivity. Benefiting from the favorable features, the Ni3S2@3-D graphene (especially 900 °C sample) exhibits excellent OER performances in alkaline medium, which includes a low on-set potential (1.53 V), low overpotential of 305 mV at a current density of 10 mA cm−2, and a smaller Tafel slope (50 mV dec−1). This catalyst also shows ultrahigh stability after chronoamperometry response at 10 mA cm−2 for 48 h with 30% increase in the current density. The present work opens a new approach for the one-pot construction of hybrid materials between metal sulfide and graphene to increase the electrocatalytic activity of non-noble metal OER catalysts.  相似文献   

7.
Reasonable design and preparation of non-noble metal electrocatalysts with predominant catalytic activity and long-term stability for oxygen evolution reaction (OER) are essential for electrocatalytic water splitting. Ni foam (NF) is highlighted for its 3D porous structure, impressive conductivity and large specific surface area. Herein, nano/micro structured dendritic cobalt activated nickel sulfide grown on 3D porous NF (Co–Ni3S2/NF) has been successfully synthesized by one-step hydrothermal method. Due to the ingenious incorporation of Co, Co–Ni3S2/NF electrode shows auspicious electrocatalytic performance for OER compared with Ni3S2/NF electrode. As a result, Co–Ni3S2/NF needs overpotential of only 274 and 459 mV at current density of 10 and 50 mA cm−2, respectively, while Ni3S2/NF requires overpotential of 344 and 511 mV. At potential of 2.0 V (vs. RHE), Co–Ni3S2/NF displays current density of 191 mA cm−2, while Ni3S2/NF just attains current density of only 135 mA cm−2. Moreover, Co–Ni3S2/NF demonstrates excellent stability for uninterrupted OER in alkaline electrolyte. The strategy of designing and preparing cobalt activated nickel sulfide grown on NF renders a magnificent prospect for the development of metal-sulfide-based oxygen evolution catalysts with excellent electrocatalytic performances.  相似文献   

8.
The synthesis of cost-effective and high-performance electrocatalysts for water splitting is the main challenge in electrochemical hydrogen production. In this study, we adopted a high throughput method to prepare bi-metallic catalysts for oxygen/hydrogen evolution reactions (OER/HER). A series of Ni–Mo alloy electrocatalysts with tunable compositions were prepared by a simple co-sputtering method. Due to the synergistic effect between Ni and Mo, the intrinsic electrocatalytic activity of the Ni–Mo alloy electrocatalysts is improved, resulting in excellent HER and OER performances. The Ni90Mo10 electrocatalyst shows the best HER performance, with an extremely low overpotential of 58 mV at 10 mA cm?2, while the Ni40Mo60 electrocatalyst shows an overpotential of 258 mV at 10 mA cm?2 in OER. More significantly, the assembled Ni40Mo60//Ni90Mo10 electrolyzer only needs a cell voltage of 1.57 V to reach 10 mA cm?2 for overall water splitting.  相似文献   

9.
The development of highly active and low-cost catalysts for hydrogen evolution reaction (HER) is significant for the development of clean and renewable energy research. Owing to the low H adsorption free energy, molybdenum disulfide (MoS2) is regarded as a promising candidate for HER, but it shows low activity for oxygen evolution reaction (OER). Herein, graphene-supported cobalt-doped ultrathin molybdenum disulfide (Co–MoS2/rGO) was synthesized via a one-pot hydrothermal method. The obtained hybrids modified electrode exhibits a high HER catalytic activity with a low overpotential of 147 mV at the current density of 10 mA cm−2, a small Tafel slope of 49.5 mV dec−1, as well as good electrochemical stability in acidic electrolyte. Meanwhile, the catalyst shows remarkable OER activity with a low overpotential of 347 mV at 10 mA cm−2. The superior activity is ascribed not only to the high conductivity originated from the reduced graphene, but also to the synergistic effect between MoS2 and cobalt.  相似文献   

10.
Finding a suitable replacement for the high potential of anodic water electrolysis (oxygen evolution reaction (OER)) is significant for hydrogen energy storage and conversion. In this work, a simple and scalable method synthesizes a structurally unique Ni3N nanoarray on Ni foam, Ni3N-350/NF, that provides efficient electrocatalysis for the urea oxidation reaction (UOR) that transports 10 mA cm−2 at a low potential of 1.34 V. In addition, Ni3N-350/NF exhibits electro-defense electrocatalytic performance for hydrogen evolution reaction, which provides a low overpotential of 128 mV at 10 mA cm−2. As proof of concept, all-water-urea electrolysis measurement is carried out in 1 M KOH with 0.5 M Urea with Ni3N-350/NF as cathode and anode respectively. Ni3N-350/NF||Ni3N-350/NF electrode can provide 100 mA cm−2 at a voltage of only 1.51 V, 160 mV less than that of water electrolysis, which proves its commercial viability in energy-saving hydrogen production.  相似文献   

11.
Searching for efficient, stable and low-cost nonprecious catalysts for oxygen and hydrogen evolution reactions (OER and HER) is highly desired in overall water splitting (OWS). Herein, presented is a nickel foam (NF)-supported MoS2/NiFeS2 heterostructure, as an efficient electrocatalyst for OER, HER and OWS. The MoS2/NiFeS2/NF catalyst achieves a 500 mA cm−2 current density at a small overpotential of 303 mV for OER, and 228 mV for HER. Assembled as an electrolyzer for OWS, such a MoS2/NiFeS2/NF heterostructure catalyst shows a quite low cell voltage (≈1.79 V) at 500 mA cm−2, which is among the best values of current non-noble metal electrocatalysts. Even at the extremely large current density of 1000 mA cm−2, the MoS2/NiFeS2/NF catalyst presents low overpotentials of 314 and 253 mV for OER and HER, respectively. Furthermore, MoS2/NiFeS2/NF shows a ceaseless durability over 25 h with almost no change in the cell voltage. The superior catalytic activity and stability at large current densities (>500 mA cm−2) far exceed the benchmark RuO2 and Pt/C catalysts. This work sheds a new light on the development of highly active and stable nonprecious electrocatalysts for industrial water electrolysis.  相似文献   

12.
Developing a multifunctional and sustainable electrode material for hydrogen evolution reaction and supercapacitors is a highly feasible avenue for producing the high energy density and renewable energies. In our study, nanostructured NiCo2S4/Ni3S2/NF nanoarrays are rational developed in experiments via a simple hydrothermal reaction. Ascribed to the 3D nanostructured NiCo2S4/Ni3S2 with numerous exposure active sites and large contact areas for the electrolyte, the binder-free feature of NiCo2S4/Ni3S2/NF facilitates a low charge transfer resistance, as well as the synergetic effect of NiCo2S4 and Ni3S2. The obtained electrocatalyst showed ultrahigh electrocatalytic activity with an overpotential of 111 mV at 10 mA cm−2 and a Tafel slope of 57 mV dec−1. In addition, the electrode showed an area specific capacity of 6.13 F cm−2 at 10 mA cm−2 and superior rate capability (2.72 F cm−2 at 80 mA cm−2), accompanied by excellent cycling stability. This results presented in our work can provide an effective strategy for rational design of other hybrid materials with excellent electrochemical performance in the application of electrocatalysis and supercapacitors.  相似文献   

13.
A new hybrid catalyst based on Ni foam (NF) and FeSe was prepared by a facial hydrothermal method, in which Se-decorated NF was subsequently electrochemically doped by Fe. Binder-free catalyst containing electrodes were directly tested for the hydrogen and oxygen evolution reaction (HER/OER). The FeSe/NF electrode displayed an OER current density of 100 mA cm−2 at potential of 1.42 V, and a relatively small Tafel slope of 109 mV dec−1 in a 1 M KOH solution. Also, FeSe/NF electrode exhibited reasonable HER overpotential of 200 mV at 10 mAcm−2 current density with Tafel slope of 145 mV dec−1. The XRD and TEM studies revealed that the formation of heterogeneous interfaces of NiSe2 and FeSe2,generated more active sites that can promote better ions and electron transport in the electrode/electrolyte interfaces. Furthermore, HRTEM analysis indicates that FeSe2 rich in Se vacancy defects can be created with suitable M − O and M − H bond for better OER and HER performance, respectively. In a-two electrode alkaline water electrolyzer, current densities of 10 mA cm−2 and 50 mA cm−2 were obtained at cell voltages of 1.52 V and 1.85 V, respectively, using pure FeSe–NF as both the cathode and anode.  相似文献   

14.
Seawater electrolysis has become an efficient method which makes full use of natural resources to produce hydrogen. However, it suffers high energy cost and chloride corrosion. Herein, we first present a Ni2P/Co(PO3)2/NF heterostructure in which Co(PO3)2 with the nano-rose morphology in-situ grown on the rough Ni2P/NF. The unique 3D nano-rose structure and the optimized electronic structure of the heterostructure enable Ni2P/Co(PO3)2/NF super-hydrophilic and super-aerophobic characteristics, and highly facilitate hydrogen evolution reaction (HER) kinetics in alkaline fresh water, alkaline seawater and even industrial wastewater at large current density, which is rarely reported. Significantly, at large current densities, Ni2P/Co(PO3)2/NF only requires overpotentials of 217 and 307 mV for HER to achieve 1000 mA cm−2 in alkaline fresh water and alkaline seawater, respectively, and requires an overpotential of 469 mV for HER to deliver 500 mA cm−2 in industrial wastewater. Furthermore, the overall seawater splitting system in the two-electrode electrolyzer only requires voltage of 1.98 V to drive 1000 mA cm−2, which also demonstrates significant durability to keep 600 mA cm−2 for at least 60 h. This study opens a new avenue of designing high efficiency electrocatalysts for hydrogen production at large current densities in alkaline seawater and industrial wastewater.  相似文献   

15.
The development of cheap, high-efficiency, and stable oxygen evolution reaction (OER) electrocatalysts is a current research hotspot. In this work, reduced graphene oxide (rGO) composite Ni3S2 microspheres grown directly on nickel foam (Ni3S2-rGO/NF) were prepared by tube furnace calcination and hydrothermal method. The Ni3S2-rGO/NF had excellent OER catalytic activity and stability with an overpotential of 303 mV at the current density of 100 mA cm−2, which was 100 mV lower than that of Ni3S2/NF, and its Tafel slope was as low as 23 mV·dec−1. The main reason for enhancing OER activity of the Ni3S2-rGO/NF is due to synergistic effect of Ni3S2 microspheres and rGO, which inhibited the production of NiS and refined the micron size of Ni3S2. This work offers a new method for developing stable and efficient OER catalysts.  相似文献   

16.
A new type of highly active and cost-effective nanoporous W-doped Ni–Fe–P catalyst on nickel foam (NF) was synthesized by a facile electroless plating method. The W-doped Ni–Fe–P/NF catalysts exhibit extraordinary catalytic activity for hydrogen evolution reaction (HER) in alkaline media, capable of yielding a current density of −10 mA cm−2 at an overpotential of only 68 mV. Furthermore, the catalysts also show efficient activity towards oxygen evolution reaction (OER) with an overpotential of 210 mV at j = 10 mA cm−2 as well. The W-doped Ni–Fe–P/NF electrocatalyst exhibits a long-term durability over 13 h test.  相似文献   

17.
Interface engineering is considered as an effective strategy to improve the hydrogen evolution reaction (HER) performance of electrocatalysts. Herein, the Ni0.85Se/Ni3S2 heterostructure grown on nickel foam (NF) is synthesized via successive wet-chemical processes. The obtained Ni0.85Se/Ni3S2 heterostructure is firstly investigated as an HER electrocatalyst in alkaline media and exhibits more excellent electrochemical properties over Ni3S2. And it delivers a low overpotential of 145 mV at a current density of ?10 mA cm?2, and superior stability. Based on the analysis of high-resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectra (XPS), the enhanced HER activity is due to the modulation of surface electronic structure, ascribing from the construction of heterointerface between Ni0.85Se and Ni3S2. Meanwhile, the Ni0.85Se/Ni3S2 heterostructure prepared in this work is also verified to be employed as a promising alternative to noble metal catalysts in HER.  相似文献   

18.
The exploration of catalysts with high activity and low cost for water splitting is still necessary. Herein, a nanowire-like morphology CoO/NF electrode is synthesized using facile hydrothermal reaction and calcination treatment. The urea can regulate its morphology during the synthetic process of CoO/NF. Electrochemical studies reveal that the as-obtained CoO/NF exhibits excellent electrocatalytic performance with overpotential of 307 mV at current density of 10 mA cm−2 and Tafel slope of 72 mV dec−1 for oxygen evolution reaction, and CoO/NF delivers current density of 10 mA cm−2 at overpotential of 224 mV for hydrogen evolution reaction. The results of the oxygen evolution reaction stability show that the overpotential of CoO/NF electrode is only increased by 4 mV at current density of 10 mA cm−2. The two-electrode water splitting with CoO/NF electrodes as both anode and cathode needs a cell potential of 1.76 V to reach 10 mA cm−2. Therefore, this simple method to prepare CoO/NF electrode can enhance the properties of electrocatalysts, which makes CoO/NF a promising material to replace noble metal-based catalysts.  相似文献   

19.
The growing hydrogen consumption has greatly promoted the development of efficient, stable and low-cost electrocatalysts for the hydrogen evolution reaction (HER). Constructing functional nanostructures is an efficacious strategy to optimize catalytic performance. Herein, we present a feasible route to fabricate distinctive 3D grass-like cobalt phosphide nanocones clad with mini-vesicles on the hierarchically porous Ni foam, which can directly serve as a binder-free electrocatalyst with superior catalytic activity and durability in HER. Thanks to its distinctive 3D microstructure featured with favourable pore-size distribution, abundant active sites provided by mini-vesicles and rapid electron transfer with the assistance of Ni foam, the as-grown grass-like CoP/NF electrocatalyst has shown a favourable overpotential in an acidic solution with an onset overpotential of ∼35 mV, an overpotential of 71 mV at a current density of 10 mA cm−2, reduced by 60 mV in comparison with that realized by urchin-like CoP/NF nanoprickles. Moreover, it has exhibited an excellent HER activity in the alkaline medium, with an overpotential of 117 mV at 10 mA cm−2, a Tafel slope of 63.0 mV dec−1 and a long-term electrochemical durability.  相似文献   

20.
Water electrolysis for green hydrogen production is gaining tremendous attention in the quest towards sustainable energy sources. At the heart of water splitting technology are the electrocatalysts, which facilitate the two half-cell reactions, i.e., the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), with the latter being the most thermodynamically uphill. Herein, we managed to fabricate Ni1-xFexO microflowers (μFs) with varying % of Fe doping (0 < x < 0.36) via an easy chemical bath deposition (CBD) method. The as-synthesized μFs drop-casted on graphene paper (GP) are then applied as electrocatalysts for OER. Compared to contrast catalysts, the electrocatalyst with xFe = 0.1 exhibits a lower overpotential of 297 mV at a current density of 10 mA cm−2, Tafel slope of 44 mV dec−1 and unprecedented turnover frequency of 4.6 s−1 at 300 mV. It is believed that this remarkable electrochemical performance mainly stems from the synergistic effects of Ni and Fe species, working in harmony to enhance charge transfer kinetics and intrinsic activity of the catalyst. This work provides a promising avenue for developing cost-effective and highly active electrocatalysts as advanced electrodes for energy related applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号