首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
魏炘  石强  符文熹  陈良 《水电能源科学》2020,38(11):207-210
为降低由于风速信号的非线性和非平稳性带来的风速预测难度,提高短期风速预测的准确性,提出一种考虑样本熵的组合分解模式和支持向量回归(SVR)相结合的预测模型。首先采用自适应噪声的完全集合经验模态分解(CEEMDAN)方法分解风速历史数据,并计算各模态分量的样本熵;然后采用变分模态分解(VMD)方法对样本熵最大的模态分量进行二次分解,充分削弱风速分量的非平稳性;接着对分解得到所有模态分量分别建立SVR预测模型;最后将各分量的预测值求和完成最终风速预测。实例分析表明,所提模型对比其他模型的预测误差最小,预测精度最高,可有效预测短期风速。  相似文献   

2.
综合能源系统中风电、光伏等可再生能源出力具有波动性和间歇性,精准的短期负荷预测有利于平抑可再生能源对系统运行的影响。系统中的多元负荷时间序列为典型的非平稳性信号,难以进行精准地预测。为了从数据层面提高综合能源系统短期负荷预测模型的精度,提出基于自适应局部迭代滤波(ALIF)的历史负荷数据分解方法,将历史负荷序列分解为具有不同频段模态函数的多个分量;针对预测模型训练中长时间序列处理困难及系统中多元负荷间耦合信息挖掘利用的问题,建立基于长短期记忆(LSTM)网络多任务学习的综合能源系统短期负荷预测模型。实验结果显示,与LSTM、ALIF-LSTM单任务学习、随机森林、LGBM方法相比,所提方法能够应对负荷波动剧烈的工况,预测精度较高,满足综合能源系统安全稳定运行控制的要求。  相似文献   

3.
准确的日前负荷预测有助于降低电力成本,提高电力系统的安全性和稳定性。该文提出一种基于NACEMD-GRU的组合型日前负荷预测方法。首先,引入NACEMD(噪声辅助复数据经验模态分解)方法对日前负荷数据进行分解,得到具有不同时频特性的日前负荷分量;然后针对各日前负荷分量分别建立基于GRU(门控循环神经网络单元)的深度学习预测模型,得到日前负荷的各分量预测结果;最后,将各分量进行组合形成总的日前负荷预测结果。实验算例表明,NACEMD方法能够进一步降低分解结果的模态混叠度,GRU适用于日前负荷预测。与现有方法相比,提出的组合型预测方法能够显著提升日前负荷预测精度。  相似文献   

4.
鉴于有效预测振动信号可为抽水蓄能机组的性能劣化及故障等预警提供重要依据的问题,提出一种基于变分模态分解(VMD)与门控循环单元神经网络(GRU)的抽水蓄能机组振动信号预测方法。首先,对原始的振动信号进行VMD分解,得到一组相对平稳且频率不同的本征模态函数(IMF),以减少不同频率信息间的相互影响;然后,针对各子序列分别构建GRU时序预测模型,并采用自适应矩估计算法(Adam)对各分量GRU预测模型进行优化;最后叠加各子序列预测结果得到抽蓄机组振动信号的预测值,并构建ANN、GRU、VMD-SVM、VMD-ANN 4种预测模型进行对比。试验结果表明,与所构建的4种预测模型相比,VMD-GRU预测模型在有效性及预测精度等方面效果显著,在实际工程中非常具有应用意义。  相似文献   

5.
针对风速时间序列不稳定导致其难以准确预测的问题,提出一种基于最优变分模态分解(OVMD)和蝙蝠算法(BA)优化最小二乘支持向量机(LSSVM)的短期风速预测模型。采用OVMD技术,将原始风速时间序列先分解为若干个相对稳定的分量序列,然后对各个分量分别建立LSSVM模型进行预测,并采用蝙蝠算法优化LSSVM中的参数,最后对优化的分量预测模型的预测值求和,即得到原始风速序列的预测值。算例分析表明,该模型具有较高的预测精度,能有效跟踪风速的变化规律。研究成果为短期风速预测提供了新思路。  相似文献   

6.
章可  李丹  孙光帆  谭雅  贺帅 《水电能源科学》2023,(1):207-211+166
针对电力负荷时序变化非线性和多周期性特点,提出一种基于分解-预测-重构框架的CVMD-GRU-DenseNet短期负荷预测方法。分解阶段依据子序列间的相关熵确定VMD最佳分解数,提高负荷序列分解质量;预测阶段针对各子序列特点筛选输入特征,规律性强的低频分量采用GRU神经网络预测模型,强随机性的高频分量采用DenseNet神经网络预测模型;最后将各分量的预测结果重构为负荷预测曲线。湖北某市四季的实际负荷算例结果表明,该方法能有效提高短期负荷预测精度,并具有较强的泛化能力。  相似文献   

7.
风电功率的准确预测对电网的安全运行和经济调度起着重要作用,为进一步提高风电功率的预测精度,文章提出了一种基于CEEMD-CNN-BiGRU-RF模型的短期风电功率预测模型。首先,利用完全集成经验模态分解(CEEMD)对风电功率时间序列进行模态分解;其次,对分解的各个风电功率时间序列利用卷积神经网络(CNN)进行特征提取;再次,建立双向门控循环单元(Bi GRU)模型对各个风电功率时间序列进行预测,叠加各个分量的预测值;最后,对误差进行进一步分析与预测,利用随机森林(RF)进行误差修正,得到最终的风电功率预测值。实验仿真表明,该模型的预测效果明显优于传统模型,模型的平均绝对百分比误差(MAPE)仅为2.09%。  相似文献   

8.
针对电力负荷非线性、非平稳性、时序性等特点,提出了一种基于EMD-LN-LSTM的短期电力负荷预测模型。利用经验模态分解(EMD)将经数据预处理之后的原始电力负荷数据分解为有限个内涵模态分量(IMF)和一个残差分量,以降低负荷序列的非平稳性和复杂度。将分解后的各分量分别输入到长短期记忆网络(LSTM)中进行预测,同时利用层标准化(LN)对LSTM进行规范化处理,优化网络模型。对各分量预测值进行重组,求出最终的负荷预测结果。以多伦多真实数据为算例,分别使用EMD-LN-LSTM模型和其他模型进行预测,结果表明:EMD-LN-LSTM模型24 h平均绝对百分比误差相较于RNN模型、LSTM模型分别降低了3.600%、1.864%,而拟合优度均高于RNN模型、LSTM模型,表明该模型能够更好地拟合负荷曲线,具有较高的预测精度。  相似文献   

9.
针对水电机组运行状态趋势预测的问题,提出了一种基于能量熵重构(EER)与支持向量回归(SVR)的混合预测模型。先针对复杂非平稳监测信号,利用快速集成经验模态分解(FEEMD)算法将其分解为多个本征模态函数(IMFs)分量和单个残余分量;然后基于能量熵(EE)理论对各分量进行重构,以有效降低分量的复杂度;最后,将生成的重构本征模态函数(RIMFs)作为SVR的输入,训练模型参数得到最优的SVR,用于预测机组状态发展趋势。与实例对比分析表明,所提混合预测模型具有较高的预测精度,为机组运维策略的制定提供了一定的指导。  相似文献   

10.
针对光伏系统发电量的影响因素,提出一种基于经验模态分解(EMD)与回声状态网络(ESNs)的组合光伏系统短期发电功率预测方法。通过对同日类型的历史发电功率数据进行EMD,得到其不同尺度的周期分量和趋势分量;滤除其体现数据差异的各个较小周期分量,针对体现数据共性的分量建立ESNs预测模型;最后,将预测值与趋势分量组合得到最终的预测结果。预测结果对比分析表明:该方法与单一回声状态网络、BP神经网络和小波神经网络预测方法相比,计算速度快,预测精度高,稳定性好。  相似文献   

11.
为了提高风速预测的准确性,提出一种基于自适应噪声完备经验模态分解(CEEMDAN)二次分解和长短时记忆(LSTM)网络的风速多步预测方法。该方法首先应用变分模态分解(VMD)将原始风速序列进行一次分解,充分利用其分解后的残余分量并采用CEEMDAN方法进行二次分解;然后将分解后的所有子序列分别输入到LSTM模型中进行风速多步预测;最后将各模型输出结果进行叠加获得预测风速。以内蒙古某风电场实测数据为例进行建模和预测分析,结果表明所提出的风速多步预测模型具有较高的预测精度,具备实际应用的可行性。  相似文献   

12.
为提高短期风功率预测精度和预测的可控性,提出一种基于能量差优化变分模态分解和布谷鸟优化组合神经网络的短期风功率预测模型。采用能量差优化变分模态分解(EVMD)的模态数,将EVMD用于短期风功率分解,基于EVMD分解序列的不同模态特点,对非线性序列采用布谷鸟优化反向传播神经网络(CS-BPNN),对平稳序列采用自回归滑动平均模型(ARMA),并重构加权得到点预测值,并基于EVMD分解所丢失的序列信息构建核密度估计,在点预测模型的基础上,进行风功率的区间预测。将所提预测方法用于澳大利亚风电场的实际算例,实验结果表明,该方法可提高短期风功率预测的准确性。  相似文献   

13.
针对光伏发电功率时间序列随机性和波动性强的特点,提出一种基于Kmeans和完备总体经验模态分解(CEEMD)、排列熵(PE)、长短期记忆(LSTM)神经网络结合的短期光伏功率预测模型。先通过Kmeans算法选出预测日的相似日;然后采用CEEMD将发电功率和影响因素数据的原始序列分解为多个固有模态分量,并用排列熵算法对模态分量进行重构;最后对重构后的子序列分别进行LSTM建模预测,再将子序列预测结果叠加起来确定光伏发电功率预测值。试验结果表明,所提预测模型与单独的LSTM预测模型和EMD-PE-LSTM预测模型相比,功率预测精度明显提高,为电网调度提供了一定参考。  相似文献   

14.
为提高短期负荷预测的精度,引入了证据理论融合蚁群神经网络的组合预测方法,根据重庆市负荷的实际数据,采用蚁群神经网络作为单一模型对其进行初步预测,由BP神经网络对预测误差及主要外界影响因素进行分析建模,获得了每个模型的可信度,并用证据理论对可信度进行合成得到组合权值,进而实现对短期电力负荷的组合预测。结果表明,该方法拟合误差小、预测精度高,具有一定的应用价值。  相似文献   

15.
考虑到电网负荷与诸多因素有关,设计了一种带有温度、气象、日期类型的广义回归神经网络(GRNN)负荷预测模型。为了提高该模型的预测精度,提出了一种改进果蝇优化算法优化广义回归神经网络(IFOA-GRNN)的方法,即在利用果蝇优化算法(FOA)进入迭代寻优时,通过改进搜索距离优化该算法的性能和稳定性。利用改进的FOA优化GRNN的光滑参数,然后利用训练好的预测模型对甘肃省某地区进行了短期负荷预测,并与FOA-GRNN和误差反向传播神经网络(BPNN)模型结果进行了误差比较。结果表明, IFOA-GRNN具有较高的预测精度,能够满足电力系统短期负荷预测的要求。  相似文献   

16.
邢晨  张照贝 《太阳能学报》2023,44(2):373-380
为提高光伏出力的预测精度,提出基于改进时间卷积网络的短期光伏出力概率预测方法。首先,通过递归特征消除确定特征数量,采用分组整合方法进行特征选择;然后,采用变分模态分解处理光伏出力序列;最后,构建一种结合注意力机制的改进时间卷积网络预测模型,得到未来时刻不同分位数下的预测值,再利用核密度估计得到概率密度曲线。实验结果表明,提出方法具有更高的预测精度,可有效反映光伏出力的不确定性。  相似文献   

17.
Wind power prediction is a widely used tool for the large-scale integration of intermittent wind-powered generators into power systems. Given the cubic relationship between wind speed and wind power, accurate forecasting of wind speed is imperative for the estimation of future wind power generation output. This paper presents a performance analysis of short-term wind speed prediction techniques based on soft computing models (SCMs) formulated on a backpropagation neural network (BPNN), a radial basis function neural network (RBFNN), and an adaptive neuro-fuzzy inference system (ANFIS). The forecasting performance of the SCMs is augmented by a similar days (SD) method, which considers similar historical weather information corresponding to the forecasting day in order to determine similar wind speed days for processing. The test results demonstrate that all evaluated SCMs incur some level of performance improvement with the addition of SD pre-processing. As an example, the SD+ANFIS model can provide up to 48% improvement in forecasting accuracy when compared to the individual ANFIS model alone.  相似文献   

18.
准确的太阳能发电功率短期预测是保证电力调度和大规模光伏并网的关键。该文对近年来光伏发电功率短期预测研究进展进行综述,并对影响光伏发电功率的各种气象因素进行相关性分析。针对用于光伏发电短期功率预测的人工神经网络模型和深度学习模型进行总结和评述。太阳辐照度是影响预测模型精度的主要气象参数。在光伏发电功率短期预测中,神经网络及其组合模型均表现出较好的预测精度,但组合模型整体上优于单一预测模型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号