首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The paper compares the thermodynamic performance of MS9001 gas turbine based cogeneration cycle having a two-pressure heat recovery steam generator (HRSG) for different blade cooling means. The HRSG has a steam drum generating steam to meet coolant requirement, and a second steam drum generates steam for process heating. Gas turbine stage cooling uses open loop cooling or closed loop cooling schemes. Internal convection cooling, film cooling and transpiration cooling techniques employing steam or air as coolants are considered for the performance evaluation of the cycle. Cogeneration cycle performance is evaluated using coolant flow requirements, plant specific work, fuel utilisation efficiency, power-to-heat-ratio, which are function of compressor pressure ratio and turbine inlet temperature, and process steam drum pressure. The maximum and minimum values of power-to-heat ratio are found with steam internal convection cooling and air internal convection cooling respectively whereas maximum and minimum values of fuel utilisation efficiency are found with steam internal convection cooling and closed loop steam cooling. The analysis is useful for power plant designers to select the optimum compressor pressure ratio, turbine inlet temperature, fuel utilisation efficiency, power-to-heat ratio, and appropriate cooling means for a specified value of plant specific work and process heating requirement.  相似文献   

2.
In this paper energy, exergy and thermoeconomic analysis of a combined cooling, heating and power (CCHP) system has been performed. Applying the first and second laws of thermodynamics and economic analysis, simultaneously, has made a powerful tool for the analysis of energy systems such as CCHP systems. The system integrates air compressor, combustion chamber, gas turbine, dual pressure heat recovery steam generator (HRSG) and absorption chiller to produce cooling, heating and power. In fact, the first and second laws of thermodynamics are combined with thermoeconomic approaches. Next, computational analysis is performed to investigate the effects of below items on the fuel consumption, values of cooling, heating and net power output, the first and second laws efficiencies, exergy destruction in each of the components and total cost of the system. These items include the following: air compressor pressure ratio, turbine inlet temperature, pinch temperatures in dual pressure HRSG, pressure of steam that enters the generator of absorption chiller and process steam pressure. Decision makers may find the methodology explained in this paper very useful for comparison and selection of CCHP systems. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
In the present work, performance of new configuration of Micro-gas turbine cogeneration and tri-generation systems, with a steam ejector refrigeration system and Heat recovery Steam Generator (HRSG) are studied. A micro-gas turbine cycle produces 200 KW power and exhaust gases of this micro-gas turbine are recovered in an HRSG. The main part of saturated steam in HRSG is used through a steam ejector refrigeration system to produce cooling in summer. In winter, this part of saturated steam is used to produce heating. In the first part of this paper, performance evaluation of this system with respect to Energy Utilization Factor (EUF), Fuel Energy Saving Ratio (FESR), thermal efficiency, pinch point temperature difference, net power to evaporator cooling load and power to heat ratio is carried out. It has been shown that by using the present cogeneration system, one can save fuel consumption from about 23% in summer up to 33% in winter in comparison with separate generation of heating, cooling and electricity.  相似文献   

4.
A cogeneration scheme comprising a combined cycle power plant (CCPP) with an absorption chiller used for space cooling is studied. A parametric study investigating the effect of different parameters, such as steam to gas mass flow rate ratio, fraction of turbine steam extraction, ambient temperature, inlet steam turbine temperature, compressor pressure ratio, and gas turbine (GT) combustion efficiency on the performance of the system has been made. In another aspect of the study, the relative advantage of using CCPP with absorption cooling over thermally equivalent mechanical vapor compression (MVC) cooling is also demonstrated.  相似文献   

5.
Abdul Khaliq  Ibrahim Dincer 《Energy》2011,36(5):2662-2670
In this paper, exergy method is applied to analyze the gas turbine cycle cogeneration with inlet air cooling and evaporative aftercooling of the compressor discharge. The exergy destruction rate in each component of cogeneration is evaluated in detail. The effects of some main parameters on the exergy destruction and exergy efficiency of the cycle are investigated. The most significant exergy destruction rates in the cycle are in combustion chamber, heat recovery steam generator and regenerative heat exchanger. The overall pressure ratio and turbine inlet temperature have significant effect on exergy destruction in most of the components of cogeneration. The results obtained from the analysis show that inlet air cooling along with evaporative aftercooling has an obvious increase in the energy and exergy efficiency compared to the basic gas turbine cycle cogeneration. It is further shown that the first-law efficiency, power to heat ratio and exergy efficiency of the cogeneration cycle significantly vary with the change in overall pressure ratio and turbine inlet temperature but the change in process heat pressure shows small variation in these parameters.  相似文献   

6.
开发了一种可全年利用烟气余热的联合循环双工况燃气轮机进气冷却系统。在气温高、进气冷却系统投用的情况下,能有效增加燃气轮机出力;在气温低、低压加热器投用的情况下,通过回收烟气余热,增加余热锅炉出力,提高蒸汽轮机负荷。介绍了进气冷却系统的工作原理,分析了进气冷却运行方式的初步运行结果。  相似文献   

7.
The aim of this work is to analyze methane-fed internal reforming solid oxide fuel cell–gas turbine (IRSOFC—GT) power generation system based on the first and second law of thermodynamics. Exergy analysis is used to indicate the thermodynamic losses in each unit and to assess the work potentials of the streams of matter and of heat interactions. The system consists of a prereformer, a SOFC stack, a combustor, a turbine, a fuel compressor and air compressor, recuperators and a heat recovery steam generator (HRSG). A parametric study is also performed to evaluate the effect of various parameters such as fuel flow rate, air flow rate, temperature and pressure on system performance.  相似文献   

8.
An energy analysis of three typical solid oxide fuel cell (SOFC) power systems fed by methane is carried out with detailed thermodynamic model. Simple SOFC system, hybrid SOFC‐gas turbine (GT) power system, and SOFC‐GT‐steam turbine (ST) power system are compared. The influences of air ratio and operative pressure on the performance of SOFC power systems are investigated. The net system electric efficiency and cogeneration efficiency of these power systems are given by the calculation model. The results show that internal reforming SOFC power system can achieve an electrical efficiency of more than 49% and a system cogeneration efficiency including waste heat recovery of 77%. For SOFC‐GT system, the electrical efficiency and cogeneration efficiency are 61% and 80%, respectively. Although SOFC‐GT‐ST system is more complicated and has high investment costs, the electrical efficiency of it is close to that of SOFC‐GT system. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Based on experimental data, typical off-design characteristic curves with corresponding formulas of internal combustion engine (ICE) are summarized and investigated. In combination with analytical solution of single-pressure heat recovery steam generator (HRSG) and influence of ambient pressure on combined heat and power (CHP) system, off-design operation regularities of ICE cogeneration are analyzed. The approach temperature difference ΔT a, relative steam production and superheated steam temperature decrease with the decrease in engine load. The total energy efficiency, equivalent exergy efficiency and economic exergy efficiency first increase and then decrease. Therefore, there exists an optimum value, corresponding to ICE best efficiency operating condition. It is worth emphasizing that ΔT a is likely to be negative in low load condition with high design steam parameter and low ICE design exhaust gas temperature. Compared with single shaft gas turbine cogeneration, ΔT a in ICE cogeneration is more likely to be negative. The main reason for this is that the gas turbine has an increased exhaust gas flow with the decrease in load; while ICE is on the contrary. Moreover, ICE power output and efficiency decrease with the decrease in ambient pressure. Hence, approach temperature difference, relative steam production and superheated steam temperature decrease rapidly while the cogeneration efficiencies decrease slightly. It is necessary to consider the influence of ambient conditions, especially the optimization of ICE performances at different places, on cogeneration performances.  相似文献   

10.
The integration of an aqua‐ammonia inlet air‐cooling scheme to a cooled gas turbine‐based combined cycle has been analyzed. The heat energy of the exhaust gas prior to the exit of the heat recovery steam generator has been chosen to power the inlet air‐cooling system. Dual pressure reheat heat recovery steam generator is chosen as the combined cycle configuration. Air film cooling has been adopted as the cooling technique for gas turbine blades. A parametric study of the effect of compressor–pressure ratio, compressor inlet temperature, turbine inlet temperature, ambient relative humidity, and ambient temperature on performance parameters of plants has been carried out. It has been observed that vapor absorption inlet air cooling improves the efficiency of gas turbine by upto 7.48% and specific work by more than 18%, respectively. However, on the adoption of this scheme for combined cycles, the plant efficiency has been observed to be adversely affected, although the addition of absorption inlet air cooling results in an increase in plant output by more than 7%. The optimum value of compressor inlet temperature for maximum specific work output has been observed to be 25 °C for the chosen set of conditions. Further reduction of compressor inlet temperature below this optimum value has been observed to adversely affect plant efficiency. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
This paper addresses the impact of excess air on turbine inlet temperature, power, and thermal efficiency at different pressure ratios. An explicit relationship is developed to determine the turbine inlet temperature as a function of excess air, pressure ratio and relative humidity. The effect of humidity on the calculation of excess air to achieve a pre-established power output is analyzed and presented. Likewise it is demonstrated that dry air calculations provide a valid upper bound for the performance of a gas turbine under a wet environment.  相似文献   

12.
This paper presents exergy analysis of a conceptualized combined cogeneration plant that employs pressurized oxygen blown coal gasifier and high‐temperature, high‐pressure solid oxide fuel cell (SOFC) in the topping cycle and a bottoming steam cogeneration cycle. Useful heat is supplied by the pass‐out steam from the steam turbine and also by the steam raised separately in an evaporator placed in the heat recovery steam generator (HRSG). Exergy analysis shows that major part of plant exergy destruction takes place in gasifier and SOFC while considerable losses are also attributed to gas cooler, combustion chamber and HRSG. Exergy losses are found to decrease with increasing pressure ratio across the gas turbine for all of these components except the gas cooler. The fuel cell operating temperature influences the performance of the equipment placed downstream of SOFC. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
According to the type of ancillary service provisioned, operation mode of a power plant may change to part load operation. In this contribution, part load operation is understood as delivering a lower power output than possible at given ambient temperature because of gas turbine power output control. If it is economically justified, a power plant may operate in the part load mode for longer time. Part load performance of a newly built 80 MW combined cycle in Slovakia was studied in order to assess the possibilities for fuel savings. Based on online monitoring data three possibilities were identified: condensate preheating by activation of the currently idle hot water section; change in steam condensing pressure regulation strategy; and the most important gas turbine inlet air preheating. It may seem to be in contradiction with the well proven concept of gas turbine inlet air cooling, which has however been developed for boosting the gas turbine cycles in full load operation. On the contrary, in a combined cycle in the part load operation mode, elevated inlet air temperature does not affect the part load operation of gas turbines but it causes more high pressure steam to be raised in HRSG, which leads to higher steam turbine power output. As a result, less fuel needs to be combusted in gas turbines in order to achieve the requested combined cycle’s power output. By simultaneous application of all three proposals, more than a 2% decrease in the power plant’s natural gas consumption can be achieved with only minor capital expenses needed.  相似文献   

14.
This paper has proposed an improved liquefied natural gas (LNG) fuelled combined cycle power plant with a waste heat recovery and utilization system. The proposed combined cycle, which provides power outputs and thermal energy, consists of the gas/steam combined cycle, the subsystem utilizing the latent heat of spent steam from the steam turbine to vaporize LNG, the subsystem that recovers both the sensible heat and the latent heat of water vapour in the exhaust gas from the heat recovery steam generator (HRSG) by installing a condensing heat exchanger, and the HRSG waste heat utilization subsystem. The conventional combined cycle and the proposed combined cycle are modelled, considering mass, energy and exergy balances for every component and both energy and exergy analyses are conducted. Parametric analyses are performed for the proposed combined cycle to evaluate the effects of several factors, such as the gas turbine inlet temperature (TIT), the condenser pressure, the pinch point temperature difference of the condensing heat exchanger and the fuel gas heating temperature on the performance of the proposed combined cycle through simulation calculations. The results show that the net electrical efficiency and the exergy efficiency of the proposed combined cycle can be increased by 1.6 and 2.84% than those of the conventional combined cycle, respectively. The heat recovery per kg of flue gas is equal to 86.27 kJ s?1. One MW of electric power for operating sea water pumps can be saved. The net electrical efficiency and the heat recovery ratio increase as the condenser pressure decreases. The higher heat recovery from the HRSG exit flue gas is achieved at higher gas TIT and at lower pinch point temperature of the condensing heat exchanger. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
对燃气轮机进口的空气进行预冷,能够提高发电机组的输出功率。与蓄冷方法相比,使用燃气轮机-蒸汽联合循环电站余热锅炉低压蒸发器的一部分蒸汽为热源,利用溴化锂吸收式制冷机制取冷源,冷却燃气轮机进口处的空气,以提高发电机组的输出功率,该方法技术可行,经济效益显著。  相似文献   

16.
Most natural gas (NG) producers in the Persian Gulf face increasing challenges in meeting their domestic gas demands and therefore seek to reduce their NG consumption. Concurrently, the on‐site power generation and cooling capacities of local NG processing facilities are constrained by extreme climatic conditions. A combined cooling and power scheme based on gas turbine (GT) waste heat‐powered absorption refrigeration is techno‐economically assessed to reduce the NG consumption of a major gas processing plant in the Persian Gulf. The scheme utilizes double‐effect water‐lithium bromide absorption refrigeration activated by steam generated from GT exhaust gas waste heat to provide both GT compressor inlet air and process gas cooling. Based on a thermodynamic analysis, recovery of 150 MW of GT waste heat is found to enhance the plant cooling capacity by 195 MW, thereby permitting elimination of a 32.6 MW GT and existing cooling equipment. On‐site power generation is enhanced by 196 GWh annually through GT compressor inlet air cooling, with energy efficiency (i.e., 64%) improved by 35% using cogeneration relative to the existing power generation plant. The overall net annual operating expenditure savings contributed by the combined cooling and power system are of $US13 million to 34 million based on present and projected local utility prices, with an economic payback period estimated at 2 to 5 years. These savings translate to approximately 94 to 241 MMSCM of NG per year, highlighting the potential of absorption refrigeration to both enhance the power generation and cooling capacity of hydrocarbon processing plants exposed to harsh environmental conditions and to realize substantial primary energy savings. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
本文提出一种新型水泥工业余热与生物质能互补发电系统,该系统采用水泥窑低温余热和生物质补燃有机结合的方式大幅提高水泥窑余热发电蒸汽参数与系统效率。来自水泥生产线窑头和窑尾的低温余热烟气全部用来加热工质水产生饱和蒸汽,饱和蒸汽进入生物质补燃系统中进行过热后送入汽轮发电机组中做功发电,补燃燃料为生物质气化燃气。本研究建立了单压和双压2种互补发电系统,分析了其热力学性能,结果表明:单压互补发电系统与传统单压纯低温发电系统相比,系统循环热效率和系统发电效率分别提高了1.63和1.92个百分点。双压互补发电系统与传统双压纯低温发电系统相比,系统循环热效率和系统发电效率分别提高了1.05和1.53个百分点。  相似文献   

18.
The heat recovery steam generator (HRSG) and duct burner are parts of a combined cycle which have considerable effect on the steam generation. The effect of the gas turbine, duct burner and HRSG on power generation is investigated to reduce exergy destruction and power loss in the gas turbine. The results show that with an increase in duct burner flow rate, pressure loss in the recovery boiler increases, steam generation increases on the HP side while it decreases on the LP side. With a reduction in the HP pinch point, thermal recovery increases while the LP pinch point does not have a significant effect. Then, power loss due to pressure drop in the gas turbine and the electricity cost are considered as two objective functions for optimization. Finally, the sensitivity analysis on ambient temperature, compressor pressure ratio, fuel lower heating value, duct burner fuel rate, condenser pressure and main pressure are performed and results are reported. It is concluded that with an increment in compressor pressure ratio, the duct burner flow rate and consequently steam generation increases while electricity cost decrease.  相似文献   

19.
The paper deals with thermodynamic analysis of cooled gas turbine‐based gas‐steam combined cycle with single, dual, or triple pressure bottoming cycle configuration. The cooled gas turbine analyzed here uses air as blade coolant. Component‐wise non‐dimensionalized exergy destruction of the bottoming cycle has been quantified with the objective to identify the major sources of exergy destruction. The mass of steam generated in different configurations of heat recovery steam generator (HRSG) depends upon the number of steam pressure drums, desired pressure level, and steam temperature. For the selected set of operating parameters, maximum steam has been observed to be generated in the case of triple pressure HRSG = 19 kg/kg and minimum in single pressure HRSG = 17.25 kg/kg. Plant‐efficiency and plant‐specific works are both highest for triple‐pressure bottoming cycle combined cycle. Non‐dimensionalized exergy destruction in HRSG is least at 0.9% for B3P, whereas 1.23% for B2P, and highest at 3.2% for B1P illustrating that process irreversibility is least in the case of B3P and highest in B1P. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
This paper analyses a steam power – two-stage binary cycle plant (SPP–2BCP), in which low temperature waste heat from a conventional steam power plant can be efficiently utilized to generate electricity by installing a bottoming binary cycle. The result from a previous calculation on the installation of binary cycle technology on a Steam Power Plant (SPP) with n-Pentane working fluid indicates an increase in plant efficiency of about 9%. The purpose of this study is to analyze the sensitivity of performance of the binary cycle system against variations in the SPP operational load and the condenser’s cooling water temperature. The calculation is conducted on SPP load variations of 25%, 50%, 75% and 100%, inlet turbine pressure variations of 5 bar–30 bar, and inlet turbine temperature variations of 125 °C up to 235 °C. Each of these is also analyzed with ambient cooling water temperatures of 30 °C–37 °C. The results of the analysis indicate that the performance of this binary cycle SPP degrades slightly with SPP load, turbine inlet temperature, and turbine inlet pressure variations and with cooling water variations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号