首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
在分析NOx生成机理的基础上,用试验的方法研究了过量空气系数、燃烧器倾角以及顶部燃尽风开度对NOx排放浓度的影响。研究结果表明:在相同负荷下,过量空气系数从1.14(氧量为2.5%)至1.27(氧量为4.5%)的过程中,NOx排放浓度随之增加且;燃烧器摆角自下向上摆动时,NOx排放浓度不断减小;顶部燃尽风开度增大时,NOx排放量降低。  相似文献   

2.
在发动机瞬态工况下,试验研究了排气质量流量、过量空气系数的阶跃幅值和周期对三效催化转换器动态特性的影响规律.试验结果表明,排气质量流量、过量空气系数的阶跃幅值和周期对三效催化转换器活性层中铈(Ce)表面氧气吸附和脱附存储能力(OSC)、排放影响显著.稀混合气向浓混合气阶跃后,排气质量流量增加,出口过量空气系数在理论混合...  相似文献   

3.
为了更好地研究小排量CNG单燃料发动机工作时过量空气系数λ对发动机性能的影响,运用AVL—FIRE软件对不同λ下的发动机燃烧过程进行模拟,分析了λ对燃烧过程以及排放情况的影响,得到了在特定工况下合适的λ值。  相似文献   

4.
基于一台高压直喷汽油机,将汽油直喷喷射器替换为氢气直喷喷射器,试验研究了发动机燃用氢气与汽油时的燃烧和排放特性差异。采用空气稀释,进一步分析了氢气发动机稀薄燃烧模式下热效率提升潜力及氮氧化物排放特性,明确了氢气燃料对发动机燃烧及污染物排放的影响规律。结果表明,当量燃烧模式下,相比汽油发动机,氢气发动机的燃烧持续期明显缩短,有效热效率降低,NOx排放升高,CO及总碳氢(total hydrocarbon, THC)排放显著降低。提高氢气发动机的过量空气系数有助于改善有效热效率。在中等负荷工况下,过量空气系数为2.7时有效热效率可达43.5%。增大过量空气系数,氢气发动机能够在保持较高燃烧稳定性的情况下显著降低NOx排放。在低负荷工况下,当过量空气系数大于2.3时NOx排放最低可降低至44×10-6。  相似文献   

5.
循环流化床中石油焦与煤混合燃烧SO2排放特性研究   总被引:1,自引:0,他引:1  
在一座0.5MW1循环流化床热态试验装置上进行了石油焦与煤混合燃烧试验,研究了烟气中SO2的排放特性.对于石油焦与煤不同燃料配比,不同锅炉运行参数,如过量空气系数、床温、一次风率、Ca/S比等对烟气中SO2排放浓度的影响规律进行了研究.试验表明:对不同配比的燃料,随过量空气系数和一次风率的增大,SO2排放浓度降低;对于床温有一最佳温度,其SO2排放浓度最低;随Ca/S增大,SO2排放浓度降低。  相似文献   

6.
基于一台四冲程单缸发动机开展预燃室湍流射流点火(turbulent jet ignition, TJI)甲醇发动机燃烧特性、性能表现和排放特性的试验研究。结果表明,TJI燃烧模式燃烧速率较快,放热率(heat release rate, HRR)峰值明显较高,且具有更短的滞燃期和燃烧持续期。随着过量空气系数变大,缸内压力和放热率峰值变小,TJI和火花塞点火(spark ignition, SI)燃烧模式滞燃期和燃烧持续期均变长。此外,TJI燃烧模式可有效提升甲醇发动机的稀薄燃烧稳定性,可将稀燃极限拓展至过量空气系数2.0。TJI燃烧模式下平均指示压力略低于SI模式;然而对于过量空气系数大于1.1的稀燃工况,TJI燃烧模式指示燃油消耗率更低,在过量空气系数1.3时低于570 g/(kW·h),说明其具有更好的燃油经济性。TJI燃烧模式下氮氧化物排放量明显低于SI燃烧模式,过量空气系数1.1时降低约37.2%,并且在过量空气系数大于1.3的极稀燃工况具有相对较低的甲醛CH2O和碳氢化合物排放。  相似文献   

7.
分析了汽油发动机空燃比闭环PI控制器的数学模型,提出了自适应空燃比闭环控制算法,研究了阶跃型氧传感器响应变慢对汽油机空燃比和排放的影响。研究结果表明:当氧传感器信号从稀到浓变慢时,过量空气系数相对于正常值会减小,同时HC和CO排放浓度会增大;当氧传感器信号从浓到稀变慢时,过量空气系数相对于正常值会增大,同时氨氧化物(NOx)排放浓度会增大。试验结果表明:设计的自适应空燃比PI控制器减小了在氧传感器响应变慢时过量空气系数偏离正常值的幅度,能够减少有害气体排放。  相似文献   

8.
在TY1100柴油机上试验研究了8.0、10.7、14.0三种压缩比£对二甲醚均质压燃发动机排放特性的影响。研究结果表明:三种压缩比均可以有效控制发动机NOx排放,使其接近于零,并实现无烟燃烧;发动机的低排放区与混合气过量空气系数密切相关,不同ε有不同的最佳运行范围,在此范围内,CO均能达到0.29,6的低排放,HC则在ε=10.7附近时较高。  相似文献   

9.
LPG小型点燃式发动机怠速工况下微粒排放特性研究   总被引:1,自引:0,他引:1  
介绍了LPG点燃式发动机在怠速工况下的微粒排放特性,试验在一台电控单缸机上进行。通过在不同混合气过量空气系数下的试验,发现理论空燃比附近微粒的排放量最少;在混合气浓区的微粒排放随着过量空气系数变小而增多;在混合气稀区的微粒排放随过量空气系数增大也略有增加。微粒的排放随点火提前角的推迟有先减小后增加的趋势。随转速的增加,粒径峰值逐渐向粒径增大变化。怠速工况下的微粒粒径主要集中在(23.7~133)nm。颗粒物排放浓度与HC排放的浓度在趋势上有较好的一致性。  相似文献   

10.
以气口顺序喷射、全电控、柴油引燃天然气发动机为实验发动机,对柴油引燃天然气发动机的最佳引燃柴油量及过量空气系数的浓限、稀限进行了研究。研究发现:对于柴油引燃天燃气发动机的不同运行工况,存在相应的最佳引燃柴油量;最佳引燃柴油量并非越小(或天然气替代率越高)越好,在较小的引燃柴油量下,存在一个对碳烟排放不敏感的引燃柴油量;在这个不敏感的引燃柴油量范围内,适当增加引燃柴油量可以使天然气/空气混合气工作在较稀的过量空气系数下,降低NOx排放。通过实验得到了天然气/空气混合气过量空气系数的浓限、稀限,指出过量空气系数浓限是由NOx的排放标准所决定的,稀限则是由碳烟、HC、CO排放标准所决定的。  相似文献   

11.
The effect of excess air ratio (λ) and ignition advance angle (θig) on the combustion and emission characteristics of hydrogen enriched compressed natural gas (HCNG) on a 6-cylinder compressed natural gas (CNG) engine has been experimental studied in an engine test bench, aiming at enriching the sophisticated calibration of HCNG fueled engine and increasing the prediction accuracy of the SVM method on automobile engines. Three different fuel blends were selected for the experiment: 0%, 20% and 40% volumetric hydrogen blend ratios. It is noted that combustion intensity varies with the excess air ratio and the ignition advance angle, so are the emissions. The optimal value of λ or θig has been explored in the specific engine condition. Results show that blending hydrogen can enhance and advance the combustion and stability of CNG engine, and it also has some benefic influence on the emissions such as reducing the CO and CH4. Meanwhile, a simulation research on forecasting the engine performance by using the support vector machine (SVM) method was conducted in detail. The torque, brake specific fuel consumption and NOx emission have been selected to characterize the power, economic and emissions of the engine with various HCNG fuels, respectively. It can be seen that the optimal model built by the SVM method can highly describe the relationship of the engine properties and condition parameters, since the value of the complex correlation coefficient is larger than 0.97. Secondly, the prediction performance of the optimal model for torque or BSFC is much better than the case of NOx. Besides, the optimal model built by the PSO optimization method has the best prediction accuracy, and the accuracy of the model obtained based on the training group with 20% hydrogen blend ratio is the best compared with those of others. The upshots in this article provide experimental support and theoretical basis for the adoption of HCNG fuel on internal combustion engines as well as the application of intelligent algorithmic in the engine calibration technology field.  相似文献   

12.
The idle performance of an 11-L, 6-cylinder engine equipped with a turbocharger and an intercooler was investigated for both compressed natural gas (CNG) and hydrogen-blended CNG (HCNG) fuels. HCNG, composed of 70% CNG and 30% hydrogen in volume, was used not only because it ensured a sufficient travel distance for each fueling, but also because it was the optimal blending rate to satisfy EURO-6 emission regulation according to the authors' previous studies. The engine test results demonstrate that the use of HCNG enhanced idle combustion stability and extended the lean operational limit from excess air ratio (λ) = 1.5 (CNG) to 1.6. A decrease of more than 25% in the fuel consumption rate was achieved in HCNG idle operations compared to CNG. Total hydrocarbon and carbon monoxide emissions decreased when fueled with HCNG at idle because of the low carbon content and enhanced combustion characteristics. In particular, despite hydrogen enrichment, less nitrogen oxides (NOx) were emitted with HCNG operations because the amount of fuel supplied for a stable idle was lower than with CNG operations, which eventually induced lower peak in-cylinder combustion temperature. This low HCNG fuel quantity in idle condition also induced a continuous decrease in NOx emissions with an increase in λ. The idle engine test results also indicate that cold-start performance can deteriorate owing to low exhaust gas temperature, when fueled with HCNG. Therefore, potential solutions were discussed, including combustion strategies such as retardation of spark ignition timing combined with leaner air/fuel ratios.  相似文献   

13.
混合器结构对保证天然气与空气的混合以及两者的流量满足合适的比例有着重要影响.通过理论计算分析,得出满足天然气发动机正常工作的混合器喉口直径与燃气孔直径的关系.根据发动机过量空气系数与平均有效压力关系,针对某发动机进行了混合器管路的结构设计.结合整机实验进行空燃比测试,验证了混合器设计的合理性.  相似文献   

14.
选择满足国六排放标准的天然气发动机,用全流稀释排放设备采集了发动机常用工况的排放数据并分析了发动机过量空气系数、催化器温度及发动机尾气中CO、NO x等污染物体积浓度对NH 3排放的影响并提出控制NH 3排放的方法。研究结果表明:当发动机过量空气系数大于0.965时,发动机尾气中NH 3的排放随过量空气系数增大而逐渐降低;发动机尾气排放污染物CO对NH 3的排放量影响较大,在一定范围内CO的体积浓度与NH 3的排放量成正相关,但是NO x的体积浓度与NH 3的排放量没有明显的对应关系。另外,三元催化器(three way catalyst,TWC)包裹保温材料后,发动机尾气中NH 3的排放随着催化器温度的升高而降低。在3种控制天然气发动机尾气中NH 3排放的技术中,当前建议选择两级式TWC技术方案对天然气发动机NH 3排放进行控制处理,待逃逸氨催化器(ammonia slip catalyst,ASC)适应天然气发动机发展后,TWC+ASC可以成为良好的排放控制技术方案。  相似文献   

15.
从理论上分析了影响电控顺序喷射CNG发动机喷射定时的因素及其影响特点。建立了CNG发动机试验台架并确定了进行喷射定时试验的方法。在两个转速和三种负荷工况下进行了喷射定时试验。分析了喷射定时对单燃料CNG发动机动力性、经济性以及排放性能的影响,验证了发动机转速和喷射脉宽对于喷射定时的影响特点,得出了CNG发动机各工况下喷射定时调整的方向和大致范围。  相似文献   

16.
Compared to widening usage of CNG in commercial gasoline engines, insufficient but increasing number of studies have appeared in open literature during last decades while engine characteristics need to be quantified in exact numbers for each specific fuel converted engine. In this study, a dual sequential spark ignition engine (Honda L13A4 i-DSI) is tested separately either with gasoline or CNG at wide open throttle. This specific engine has unique features of dual sequential ignition with variable timing, asymmetrical combustion chamber, and diagonally positioned dual spark-plug. Thus, the engine led some important engine technologies of VTEC and VVT. Tests are performed by varying the engine speed from 1500 rpm to 4000 rpm with an increment of 500 rpm. The engine’s maximum torque speed of 2800 rpm is also tested. For gasoline and CNG fuels, engine performance (brake torque, brake power, brake specific fuel consumption, brake mean effective pressure), emissions (O2, CO2, CO, HC, NOx, and lambda), and the exhaust gas temperature are evaluated. In addition, numerical engine analyses are performed by constructing a 1-D model for the entire test rig and the engine by using Ricardo-Wave software. In the 1-D engine model, same test parameters are analyzed, and same test outputs are calculated. Thus, the test and the 1-D engine model are employed to quantify the effects of gasoline and CNG fuels on the engine performance and emissions for a unique engine. In general, all test and model results show similar and close trends. Results for the tested commercial engine show that CNG operation decreases the brake torque (12.7%), the brake power (12.4%), the brake mean effective pressure (12.8%), the brake specific fuel consumption (16.5%), the CO2 emission (12.1%), the CO emission (89.7%). The HC emission for CNG is much lower than gasoline. The O2 emission for CNG is approximately 55.4% higher than gasoline. The NOx emission for CNG at high speeds is higher than gasoline. The variation percentages are the averages of the considered speed range from 1500 rpm to 4000 rpm.  相似文献   

17.
在同一台发动机上通过燃用属于同类别的两地天然气的对比试验,研究了天然气(CNG)成分对发动机性能及排放的影响。试验结果表明:天然气成分的差异导致发动机的空燃比发生变化,是造成发动机性能与排放产生较大变化的主要原因,而控制发动机空燃比在较小范围变化,可以减少天然气成分对发动机性能及排放的影响。  相似文献   

18.
Compressed natural gas (CNG) buses were adopted in urban areas as a promising alternative to diesel buses, which emitted plenty of harmful emissions. Although CNG can meet the current emission standards, satisfying the requirements of the next EURO-VI emission regulation without an additional peripheral device may be impossible. The use of a hydrogen-compressed natural gas (HCNG) blend can help achieve a reduction in automotive exhaust emissions as well as prepare for an upcoming hydrogen economy through the construction of hydrogen infrastructure. Moreover, an HCNG engine has higher thermal efficiency than a CNG engine, producing lesser harmful emissions.  相似文献   

19.
Potential and knocking characteristics of a hydrogen-natural gas blend (HCNG) engine with a high compression ratio were examined from a commercial viewpoint since lean combustion with HCNG under a wide-open throttle (WOT) condition requires a high-charging-capacity turbocharger. Supercharging of intake air to extend the lean limit was investigated for a turbocharged, heavy-duty natural gas-fueled engine. Effects of compression ratio changes on fuel economy were assessed in terms of thermal efficiency and torque characteristics. Extension of the lean limit to an excess air ratio of 1.8 for an HCNG engine under WOT conditions is realizable using a supplementary supercharging system. Thermal efficiency improvement at high compression ratios is reduced under relatively rich mixture conditions because spark timing is retarded to avoid knocking. The excess air ratio corresponding to maximum thermal efficiency decreases to 1.6 for an HCNG engine due to the decrease in exhaust gas energy for intake-air charging.  相似文献   

20.
To investigate the property of the promising and eco-friendly hydrogen-fueled rotary engine, the effect of excess air ratio on the combustion and emission characteristic of it was explored by experiment. The test was conducted under 1500 rpm and 5 CAD ADTC ignition timing. The test results demonstrated that with the decrease of excess air ratio from 2 to 0.85, the thermal efficiency of the hydrogen-fueled rotary engine increases first and then decreases. Besides, increasing MAP is beneficial to improve thermal efficiency. Among the tested condition, the highest brake thermal efficiency is realized when the rotary engine operates at 1.4 excess air ratio and 88 kPa MAP, about 18.34%. And the excellent HC and NO emissions can be obtained at the highest efficiency point. Besides, with the decrease of excess air ratio and the increase of load, the stability and flame development period gradually decrease. With a decreased excess air ratio, the flame propagation period decrease first and then increases, whereas work capacity and thermal efficiency increase first and then decrease. For NO emission, it will increase sharply near the equivalent ratio and gradually decrease after rich combustion. Also, according to the analytical model, it is found that the power performance of the rotary engine depends on the trade-off relationship of in-cylinder pressure and its angle of action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号