首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为研究镁合金在超高速撞击条件下的响应特征,采用SPH(光滑粒子流体动力学)方法对球形弹丸超高速碰撞镁合金靶板进行数值模拟,并与铝合金进行对比。结果表明:钢球高速撞击靶板后,镁合金产生的孔径略大于铝合金,均高达3倍钢球直径;镁合金碎片云的膨胀距离和铝合金的相差不大,但镁合金碎片云前端粒子的动能明显低于铝合金的,能起到较好的前级防护作用。从而说明镁合金板在航空航天飞行器上具有较好的应用前景。  相似文献   

2.
为了研究陶瓷与芳纶层合板叠层结构在中高速弹丸侵彻作用下,陶瓷面板对芳纶层合板抗侵彻性能的影响,开展了13.5 g破片模拟弹丸以中高速冲击8 mm厚芳纶板、16 mm厚芳纶板、3 mm厚SiC陶瓷+8 mm厚芳纶板、3 mm厚Al2O3陶瓷+8 mm厚芳纶板4种靶板的抗侵彻性能试验。分析了有无前置陶瓷板,芳纶板受到冲击作用后,弹丸及芳纶板变形模式的差异、靶板单位面密度吸能的区别。研究结果表明:前置陶瓷板情况下,弹丸变形较大并伴随着质量磨蚀;前置陶瓷板降低了芳纶板的剪切破坏程度,增加了拉伸变形和层间分层范围;前置陶瓷结构相对于纯芳纶结构在弹速较高时抗侵彻能力较强。  相似文献   

3.
高速攻击部件和防护结构的设计都必须考虑撞击物的形状、速度和撞击方向等因素对高速碰撞结果的影响,而进行大量的试验研究较为困难,可以通过数值仿真方法为规律性研究提供必要的依据。基于LS-DYNA软件利用光滑质点动力学方法对球形弹丸高速撞击靶板进行了数值仿真,仿真结果与试验结果基本一致。在此基础上研究了撞击物的形状、撞击速度的大小和方向对高速碰撞结果的影响规律。不同形状的撞击物高速撞击靶板形成的碎片云、弹孔形状和大小均有较大差异,碎片云的颗粒大小、分散程度、弹孔的尺寸和形状随撞击速度和撞击方向的改变而改变。  相似文献   

4.
铝合金板抗枪弹倾角效应试验研究   总被引:1,自引:0,他引:1  
用7.62 mm和12.7 mm穿燃弹对不同厚度的均质铝合金板进行倾角效应试验,以研究铝合金板倾角对其防护力的影响。在试验中均以弹丸在标准弹速下对后效板的残余穿深或对靶板的总穿深来作为衡量抗弹性能的指标。对这两种穿燃弹而言,小角度时,装甲防护力比0°角时低,随着倾角增大,防护力逐渐提高。  相似文献   

5.
为研究轻装甲车辆对高速弹丸的侵彻性能,建立尖头弹多角度高速撞击金属靶板的侵彻有限元模型,对弹靶侵彻过程和靶板破坏形式进行分析计算,搭建高速运动分析实验系统,对弹靶侵彻模型进行验证。研究表明:模型结果与实验数据二者吻合较好;有限元模型和实验输出的剩余速度误差不大于5%,模拟的破坏形貌与实验结果较吻合;在一定入射角范围内,弹丸入射角度越大,厚度越大,靶板吸收能量越多。  相似文献   

6.
为了研究穿爆弹丸内装药的起爆机理,对穿爆弹丸的惯性点火元件进行设计,进行了弹道发射撞击起爆试验。对炸药采用SPH建模,对其他结构采用有限元网格划分,建立了穿靶过程数值模型。根据含能材料在撞击作用下的非冲击起爆判据,采用ANSYS/LS-DYNA软件对装药的惯性撞击特性进行分析,得到了钝化RDX装药的临界起爆能量范围。结果显示:弹丸以394 m/s的速度撞击7.4 mm的靶板时发生爆炸,装药起爆的临界比塑性能在1.42 GPa·μs~1.63 GPa·μs范围内; 在弹丸能够有效穿透靶板的情况下,弹丸的着靶速度越低,装药所受惯性冲击力越小,惯性作用持续时间越长,装药越容易被起爆。  相似文献   

7.
武强  张庆明  龙仁荣  龚自正 《兵工学报》2017,38(11):2126-2133
以空间碎片防护设计为工程应用背景,将亚稳态含能材料应用于空间碎片防护结构。利用二级轻气炮对聚四氟乙烯/铝(PTFE/Al)含能材料防护结构进行了不同面密度、不同弹丸直径、不同速度的超高速撞击实验,获得了撞击过程中的高速摄像图片及光学高温计信号。分析结果表明,含能材料防护屏超高速撞击瞬间发生了可靠的冲击起爆反应,根据反应度的不同可分为冲击爆轰区、破碎爆燃区、零反应破碎区3个区域。基于实验结果,建立了铝合金弹丸超高速撞击PTFE/Al含能材料防护屏穿孔直径的无量纲经验公式。利用实验与分析结果验证了数值模拟的有效性,获得了环境温度对PTFE/Al含能材料防护屏超高速撞击穿孔特性的影响规律。  相似文献   

8.
文中利用闪光X射线成像技术对直径为5mm的铅弹丸以约3.1km/s的速度撞击2mm厚铅靶不同时刻产生的碎片云进行动态图像诊断,获取了高速碰撞过程中的碎片云序列图,并进行了定性分析,为碎片云的特性研究奠定了实验基础.  相似文献   

9.
一种高速破片加速装置设计研究   总被引:1,自引:0,他引:1  
罗智恒  向永  何碧  韩勇 《弹道学报》2019,31(2):25-29
针对研发、检测弹药的安全性试验需求,通过分析高速弹丸加载的内弹道特性,结合身管结构的力学和强度分析,设计了一种采用火药燃气驱动技术的高速破片发射装置,该装置口径为25 mm,长度4 m。设计最大装药量200 g,发射最大弹丸质量75 g,最大膛压250 MPa。计算了该装置速度、压力与装药量、弹丸质量的关系,并与试验结果进行比较,发现二者具有较好的一致性。利用该发射装置,可将65 g质量的弹丸发射至1 840 m/s,实现了破片的高速可控加速,可应用于弹药的破片撞击安全性考核。  相似文献   

10.
铝球弹丸超高速正撞击铝Whipple防护结构舱壁的损伤分析   总被引:1,自引:0,他引:1  
低地球轨道上的航天器易受到微流星体及空间碎片的超高速撞击,导致其严重的损伤甚至灾难性的失效。撞击损伤特性研究是航天器防护设计的一个重要问题。采用实验和数值仿真方法,对铝球弹丸超高速正撞击铝合金Whipple防护结构的舱壁损伤特性进行了研究,从而模拟空间碎片对航天器舱壁的超高速撞击作用,并利用AUTODYN-2D软件获得的仿真结果与实验结果进行比较,二者具有较好的一致性。分析了铝合金Whipple防护结构舱壁撞击损伤随弹丸直径、撞击速度和防护间距变化的规律,指出影响舱壁撞击损伤特性的主要因素。  相似文献   

11.
针对高速撞击结构的局部化毁伤特性,利用LS-DYNA动力学程序,基于Lagrange法对弹丸高速撞击自由圆柱壳进行了数值模拟。分析自由放置圆筒在高速撞击下的穿孔效应和能量消耗、再分配关系。结果表明:随着撞击速度的增加,弹丸穿孔直径也呈线性增加;撞击速度在2.0~3.0 km/s范围内,其扩孔比为1.45~1.65,模拟结果与试验吻合较好。穿孔能量消耗随撞击速度提高而呈线性增加,其所占总能量的比例为16%~17%。自由圆柱壳变形内能随撞击速度增加而降低,更多的能量用于形成碎片云和增加碎片云的动能。  相似文献   

12.
为研究动能毁伤弹丸对航天器内部结构的毁伤特性,提出了一种穿透航天器外壳后区域性散布毁伤元的动能毁伤弹丸。根据空间卫星的结构特点设计了多层等效靶板,进行了动能毁伤弹丸撞击多层靶板的验证试验。对试验过程进行有限元动力学仿真,并将仿真结果与试验结果进行一致性对比,采用该模型研究了不同形状毁伤元的毁伤特点。研究结果表明:动能毁伤弹丸在穿透2 mm厚铝板后弹壳破碎释放毁伤元,且不会穿透最后一层靶板产生额外空间碎片,毁伤方案的可行性较高; 不同形状毁伤元中球形毁伤元毁伤内部结构的效果最好,立方体毁伤元穿透外壳的效果最好。  相似文献   

13.
弹丸对铝合金装甲板斜侵彻的数值模拟   总被引:1,自引:0,他引:1  
采用ABAQUS软件和Johnson-Cook材料模型,建立了弹丸斜侵彻某型铝合金装甲板的3D有限元模型。同时结合射击实验,研究了枪弹斜侵彻20mm铝合金板的过程,分析了侵彻过程中枪弹的受力特点和方向角的变化。研究结果表明:有限元模拟结果与实验结果的侵彻深度与宏观物理图像比较接近;当枪弹侵入靶板较深时,易发生塑性变形,弯曲的枪弹偏离滑移段的方向穿透靶板,模拟结果为研究穿甲弹斜侵彻金属靶板提供一种有效的分析手段。  相似文献   

14.
利用ANSYS/LS-DYNA有限元程序对双层6 mm厚4340钢板、双层6 mm厚7039铝合金板、6 mm厚7039铝合金板+6 mm厚4340钢板、6 mm厚4340钢板+6 mm厚7039铝合金板4种组合设计的双层金属靶板经受刚体侵彻之后的动态响应试验进行数值模拟。运用ALE算法比较了不同组合设计的双层金属靶板Von Mises应力分布和侵彻刚体弹动能耗散。结果表明:冲击载荷作用下双层6 mm厚4340钢板的动能耗散能力最优,6 mm厚4340钢板+6 mm厚7039铝合金板次之,双层6 mm厚7039铝合金板最弱。以6 mm厚的4340钢板为面板和以6 mm厚的7039铝合金板为背板组合比以6 mm厚的7039铝合金板为面板和以6 mm厚的4340钢板为背板组合耗散子弹的动能高23%。  相似文献   

15.
为探究层叠顺序对双硬度UHMWPE-铝合金板抗冲击性能影响,以高分子聚乙烯(UHMWPE)板、7075高强铝合金板为对象,利用一级轻气炮开展一系列平头和卵形弹打靶试验,对靶板弹道极限速度、能量吸收率、破坏模式等进行分析.揭示板材层叠顺序对接触式高分子聚乙烯-铝合金靶板防护性能的影响规律.结果表明:平头弹撞击下,UHMWPE板在前铝合金板在后的叠放顺序("软+硬")防护性能更高;卵形弹撞击下,两种叠放顺序靶板防护性能相近;两种叠放顺序靶板在平头弹撞击下均发生"冲塞破坏",在卵形弹冲击下均发生"延性扩孔"破坏.  相似文献   

16.
为研究多层结构不同材料复合靶抗高速弹体的侵彻性能与抗弹机理,设计5 mm低碳钢面板+20 mm陶瓷板+20mm陶瓷板+20 mm超高分子量聚乙烯纤维板+20 mm间隔层+10 mm低碳钢背板的多层介质复合靶结构,单层陶瓷板由陶瓷小块黏结并经玻璃纤维层包裹而成,双层陶瓷板以超高分子量聚乙烯纤维板为背板支撑并与板后间隔层构成吸能夹层。通过采用质量为40 g、尺寸为?12.8 mm×40 mm的平头圆柱形弹体高速撞击靶板,获得弹体对该结构靶板侵彻的弹道极限。结果表明,40 g弹体对该多层介质复合结构靶板侵彻的弹道极限速度为1 628.5 m/s,各层结构抗弹作用结合良好,抗高速弹体侵彻性能显著。  相似文献   

17.
Steven试验中不同形状弹头撞击下炸药响应规律研究   总被引:6,自引:5,他引:1       下载免费PDF全文
采用2 kg小钝头弹丸、针状弹丸和平头弹丸分别对PBX-2炸药进行了Steven试验,试验中采用锰铜压力计和聚偏二氟乙烯(PVDF)压电式压力传感器测试了样品中的压力变化过程,通过高速录像照片分析了点火反应过程; 通过冲击波超压传感器测量了炸药的反应超压,分析了Steven试验中不同形状弹头撞击的影响规律.结果初步表明,Steven试验中由于平面撞击产生的强剪切带作用使得炸药反应更剧烈,平头弹丸撞击时PBX-2炸药反应程度更高.  相似文献   

18.
类钢密度活性材料弹丸撞击铝靶行为实验研究   总被引:2,自引:1,他引:1  
采用弹道碰撞实验对类钢密度冷压成型和烧结硬化聚四氟乙烯/铝/钨系活性材料弹丸撞击铝靶行为进行了研究。基于圆柱形活性材料弹丸正碰撞不同厚度2A12硬铝靶的弹道极限速度、穿孔破坏模式及平均穿孔尺寸实验结果,结合THOR侵彻方程,得到活性材料弹丸正碰撞铝靶的弹道极限速度半经验关系,并分析铝靶厚度对活性材料弹丸相对于钢弹丸侵彻行为及性能的影响。从活性材料内部压力分布、靶板背面稀疏波卸载效应和活性材料激活响应点火时间等角度,分析和讨论了活性材料弹丸化学响应行为对侵彻性能的影响机理。分析结果表明,随着靶板厚度的增大,活性材料激活率和侵孔内爆燃压力随之提高,从而导致侵彻末端爆裂穿孔能力的显著增强。  相似文献   

19.
杆式弹丸贯穿金属靶板数值模拟及影响因素研究   总被引:3,自引:0,他引:3  
采用显式动力有限元程序对T.BCrvik等做的半球形头部杆式弹丸贯穿12mm厚钢靶板实验进行了二维数值模拟,得到了侵彻贯穿过程中的主要物理图象和曲线。计算结果表明,贯穿过程中的主要物理数据与实验测量结果基本一致。在此模拟基础上分析了弹丸长细比、弹丸材料、靶板厚度等因素对靶板塑性弯曲响应和穿靶后弹丸剩余速度等的影响,从而为优化弹丸、靶板设计提供参考。  相似文献   

20.
高速运动的弹丸与靶板碰撞以后,弹丸将对靶板产生侵彻或贯穿,本文利用空穴膨胀理论对可压缩硬化材料的靶板所提供的抗力进行了详尽的力学分析.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号