首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文通过对二维超声磨削纳米复相陶瓷的磨削特性进行理论分析及试验研究,尤其是磨削力的特性及其影响因素,从而探索磨削加工表面质量的影响因素并提出改善磨削效果的措施。研究结果表明,磨削力随着切深的增大而增大,随着磨削深度的进一步增加,超声振动在磨削加工中所起的作用减弱;二维超声振动磨削大大扩大了复相陶瓷磨削的塑性加工区域,二维超声振动磨削过程的塑性域是磨削深度小于5μm,而普通磨削塑性域是在磨削深度小于2μm;适当增大磨削速度,既可以增强磨削砂轮的自锐能力,获得较高的去除率,又可以增加塑性变形,改善工件的表面质量;砂轮线速度的变化对二维超声振动磨削过程中的磨削力影响比对普通磨削过程中的磨削力的影响小,故二维超声振动磨削可以选用较大的砂轮线速度;工件速度对二维超声振动磨削表面粗糙度影响很大,其值随着工件速度的增加而增大。  相似文献   

2.
用小直径砂轮超声振动磨削和普通磨削加工SiC陶瓷零件,对比研究砂轮线速度、工件进给速度、磨削深度和超声振幅对其磨削表面质量的影响。结果表明:与普通磨削相比,超声振动磨削的磨粒轨迹相互交叉叠加,工件表面形貌更均匀,表面质量更好。由于超声振动时的磨粒划痕交叉会使磨粒产生空切削,因而降低了其磨削力,使磨削过程更加稳定。超声振动磨削的表面粗糙度和磨削力随砂轮线速度和超声振幅的增加而降低,随工件进给速度和磨削深度的减小而降低。且砂轮线速度、工件进给速度较小时,超声振动磨削的效果更明显。   相似文献   

3.
本文通过对二维超声磨削纳米复相陶瓷和普通磨削进行对比试验研究,分析了磨削深度、工件速度、砂轮粒度对工件表面质量的影响.研究结果表明,采用二维超声振动磨削能大大提高工件的表面质量;表面粗糙度随着切深的增大而增大,随着切削深度的进一步增加,超声振动在磨削加工中所起的作用减弱;二维超声振动磨削大大扩大了复相陶瓷磨削的塑性加工区域,二维超声振动磨削过程的塑性域是切削深度小于5μm,而普通磨削塑性域是磨削深度小于2μm;二维超声振动磨削时,表面粗糙度随着砂轮粒度的减小而明显减小,且比较稳定,故二维超声振动磨削有利于使用细粒度砂轮;工件速度对二维超声振动磨削表面粗糙度影响很大,其值随着工件速度的增加而增大.  相似文献   

4.
研究工程陶瓷磨削参数对磨削力的影响,参数有金刚石砂轮线速度、磨削深度及工件进给速度,提高陶瓷加工效率和加工精度。以金刚石砂轮平面磨削ZrO_2陶瓷为例,通过正交实验法设计多组关于金刚石砂轮线速度、磨削深度和工件进给速度的磨削组合参数,利用平面测力仪测量不同磨削参数下的磨削力。同时,运用ABAQUS建立单颗金刚石磨粒磨削ZrO_2陶瓷的有限元模型,分析磨粒磨削陶瓷过程,将实验结果与仿真结果进行对比分析。金刚石砂轮线速度由30m/s增大到50m/s时,磨削力逐渐减小;平面磨削深度由5μm增大到15μm,磨削力逐渐增大;工件随着进给速度的增加,磨削力逐渐增大;实验结果与仿真结果基本一致。影响法向磨削力最大的因素是磨削深度,当平面磨削深度增大,法向磨削力也随之增大;砂轮线速度对切向磨削力的影响最大,随着线速度的增大,切向磨削力增大。研究结果对于提高工程陶瓷加工效率,改进加工质量具有重要的促进作用。  相似文献   

5.
通过测量磨削力,研究细粒度钎焊金刚石砂轮磨削花岗岩过程磨削力随加工参数的变化特征。结果表明:磨削力是随着砂轮线速度的增大而减小,随着工件进给速度的变大而增大,随着磨削深度的增大而增大。回归分析表明,磨削力受磨削深度的影响程度最大。不同加工条件下,法向磨削力与切向磨削力之间存在良好的线性关系,比值约为7.6。磨削过程中,金刚石与花岗石之间的运动符合Coulomb定律描述的滑动摩擦方式。  相似文献   

6.
本文通过测量不同金刚石粒度的高频感应钎焊金刚石砂轮磨削花岗石过程中的磨削力,对砂轮所受的法向力和切向力进行了研究。对不同粒度条件下磨削深度、进给速度和砂轮线速度对磨削力的影响进行了分析。研究发现磨削力随砂轮线速度的增大而减小,随磨削深度和进给速度的增大而增大,磨削深度对磨削力的影响程度比进给速度大。小粒度金刚石磨削时,磨削三要素对磨削力的影响比大粒度金刚石磨削时大。  相似文献   

7.
本文用树脂结合剂金刚石砂轮对钒酸钇晶体进行了平面磨削实验,研究了砂轮线速度、工件进给速度和磨削深度对磨削力和磨削表面粗糙度的影响。结果表明:磨削力和磨削表面粗糙度都是随着砂轮线速度的增加而减小,随进给速度和磨削深度的增加而增加,其中磨削深度对磨削力影响最大,砂轮线速度对磨削表面粗糙度影响最大。钒酸钇晶体的磨削表面主要由断裂区域和光滑区域组成,当砂轮线速度为30m/s时,磨削表面存在宽度约100μm的裂痕,而随着砂轮线速度的上升,裂痕宽度降低到50μm以下,同时光滑区域所占的比例增加,这可能与发生塑性变形的机率增大有关。  相似文献   

8.
本文采用金刚石砂轮对聚晶金刚石(PCD)复合片材料进行了精密平面磨削试验,研究了磨削工艺参数和砂轮特性对磨削力的影响规律,分析了磨削PCD材料去除机理.研究发现:随着砂轮速度的增大,切向磨削力和法向磨削力不断减小;随着磨削深度的增加,切向磨削力和法向磨削力都增加,相同粒度的陶瓷结合剂砂轮的磨削力大于树脂结合剂砂轮的磨削力;切向磨削力和法向磨削力都随着工件进给速度的增加而增大;粒度号越大,切向磨削力和法向磨削力越大.PCD材料去除主要是通过磨粒的机械磨耗、破碎作用和热物理、热化学作用等方式.  相似文献   

9.
对硬脆材料在二维超声电解在线砂轮修整技术(electrolytic in-process dressing,ELID)复合平面磨削条件下的磨削力进行理论研究,建立超声ELID复合磨削力模型。由磨削力公式可知:磨削力除了与超声波的振幅、角频率有关外,同时还受到电流的影响,且随电流的减小,磨削力逐渐增大。在不同磨削深度与砂轮转速条件下采集磨削力,并与理论值进行对比。结果显示:理论值与实测值趋于一致;法向磨削力与切向磨削力均随着磨削深度的增大而增大,随着砂轮转速的增大而减小。   相似文献   

10.
HIPSN陶瓷高效精密磨削工艺优化试验研究   总被引:3,自引:3,他引:0  
目的针对HIPSN(热等静压氮化硅)陶瓷精密加工效率低、成本高、难度大的问题,对HIPSN陶瓷高效精密磨削加工工艺进行优化。方法利用高精度成形磨床对HIPSN陶瓷进行试验,分析砂轮线速度、磨削深度、工件进给速度等工艺参数对磨削后表面质量的影响规律。结果磨削深度由0.005 mm增加到0.050 mm,表面粗糙度值由0.2773μm减小到0.2198μm,并趋于稳定;工件进给速度由1000 mm/min增加到15 000 mm/min,表面粗糙度值由0.2454μm减小到0.2256μm,之后增大到0.2560μm,并趋于稳定;砂轮线速度由20 m/s增加到50 m/s,表面粗糙度值由0.2593μm减小到0.2296μm。随着工件进给速度的增大,表面波纹度平均间距Sw由0 mm直线增加到5.90 mm;随着砂轮线速度的提高,平均间距Sw由2.33 mm直线减小到0.68 mm。优化工艺参数组合:砂轮线速度50 m/s,磨削深度0.030 mm,工件进给速度3000 mm/min。结论表面粗糙度值与磨削深度和砂轮线速度呈负相关,随着工件进给速度的增大,表面粗糙度值先减小后增大,之后趋于稳定。减小工件进给速度、提高砂轮线速度有助于改善表面波纹度。  相似文献   

11.
本文对纳米复相陶瓷材料进行了不同参数下的普通磨削和二维超声振动磨削的对比试验,研究了超声振动磨削对工件表面质量的影响,分析了不同的加工工艺参数及振动参数对加工工件表面粗糙度的影响,实验结果表明,在同样的切深条件下,超声振动磨削表面的沟槽浅而宽,可以得到比普通磨削加工粗糙度较小的加工表面,且在超声振动中砂轮作高频振动,砂轮不易堵塞,利于使用细粒度砂轮磨削;工件速度对二维超声振动磨削表面粗糙度影响很大,其值随着工件速度的增加而增大。二维超声振动磨削可以提高陶瓷材料的表面质量,并能有效地避免普通磨削下微裂纹的产生,因此它是磨削陶瓷的一种精密加工方法。  相似文献   

12.
在氧化锆陶瓷磨削中为获得较高质量表面,采用单因素试验研究磨削深度、砂轮线速度、工件进给速度对氧化锆陶瓷精密磨削表面质量的影响规律及材料去除机理,通过超景深三维显微镜以及扫描电子显微镜,观察氧化锆陶瓷试件磨削后的表面形貌,最后用正交试验法进行优选并验证。结果表明:磨削表面的粗糙度随磨削深度、工件进给速度增大而增大,随砂轮线速度增大先减小、后增大。在磨削深度5 μm、砂轮线速度40 m/s、工件进给速度1 000 mm/min的优化组合条件下,磨削3组氧化锆陶瓷的平均表面粗糙度Ra为0.388 9 、0.417 0和0.403 7 μm。   相似文献   

13.
ZrO2陶瓷平面磨削温度仿真分析与实验研究   总被引:1,自引:1,他引:0  
张珂  赵国欢  孙健  韩涛  刘春光 《表面技术》2017,46(12):251-258
目的研究工程陶瓷磨削参数对磨削温度的影响,磨削参数包括金刚石砂轮线速度、磨削深度及工件进给速度。方法以金刚石砂轮平面磨削ZrO_2陶瓷为例,运用ABAQUS建立单颗金刚石磨粒磨削ZrO_2陶瓷的有限元模型,分析磨粒磨削陶瓷过程。同时通过正交实验法设计多组关于金刚石砂轮线速度、磨削深度及工件进给速度的磨削组合参数实验,利用人工热电偶法对磨削温度进行测量,将实验结果与仿真结果进行对比分析。结果砂轮线速度由30 m/s增加到50 m/s,磨削深度由5μm增加到15μm,工件进给速度由1000 mm/min增加到3000 mm/min,磨削温度和磨削热分配比均增加,仿真结果与实验结果基本一致。结论磨削过程中磨削深度和工件进给速度对磨削温度的影响较大,随着金刚石砂轮线速度、磨削深度及工件进给速度的增加,磨削温度和磨削热分配比均增大。  相似文献   

14.
本文使用SiC砂轮和金刚石砂轮对颗粒尺寸大、体积分数高的SiCp/Al复合材料进行了平面磨削实验,研究了磨削深度和工件进给速度对磨削力的影响,并利用扫描电镜对已加工表面形貌进行了研究.结果表明:使用SiC砂轮加工时,磨削力随磨削深度的增加而增大;工件进给速度较低时,磨削力随工件进给速度增加而减小,当工件进给速度超过12...  相似文献   

15.
通过对树脂结合剂金刚石砂轮磨削单晶硅片的轴向磨削力Fz的变化规律的研究,分析了单晶硅片在磨削过程中轴向磨削力与磨削工艺参数之间的关系。通过改变砂轮的轴向进给速度、砂轮线速度和砂轮粒度等工艺参数,找出了这些工艺参数对轴向磨削力Fz的影响规律,并建立了轴向磨削力的经验公式。结果表明:树脂结合剂金刚石精密磨削单晶硅片时,轴向磨削力随着砂轮的轴向进给速度vf和磨粒粒径的增大而增大,随着砂轮线速度vs的增大而减小,且这三个工艺参数中,砂轮轴向进给速度vf对轴向磨削力的影响最大。  相似文献   

16.
结合超高速点磨削的特点,将磨粒简化为圆锥形,建立了超高速点磨削力数学模型.通过对磨削力的Matlab仿真,分析了磨削参数和点磨削变量角α和β对磨削力的影响.结果表明:点磨削力随着砂轮线速度的增加而减小,随工件速度、磨削深度、纵向进给速度的增加而增大.点磨削力随磨削变量角α和β的增大而降低,其中,β对降低磨削力的贡献要大...  相似文献   

17.
在不同磨削深度、砂轮转速和进给速度组合下,研究微粉金刚石钎焊砂轮磨削氧化铝陶瓷过程的磨削力及工件的表面粗糙度的变化规律,并筛选出低磨削力和低工件表面粗糙度的加工工艺参数。试验结果表明:在微粉金刚石钎焊砂轮的磨削过程中,氧化铝陶瓷主要通过脆性断裂的方式去除;随着磨削深度、进给速度的增加,砂轮在进给方向和切深方向的力以及工件表面粗糙度都上升;随着砂轮转速的增加,进给方向和切深方向的力以及工件表面粗糙度都下降。试验获得的低磨削力和低工件表面粗糙度精密加工工艺参数分别为:磨削深度为1.0 μm,进给速度为12 mm/min,砂轮转速为24 000 r/min和磨削深度为1.0 μm,进给速度为1 mm/min,砂轮转速为20 000 r/min。低磨削力磨削时,微粉金刚石钎焊砂轮受到的X方向和Z方向的磨削力分别为0.15 N和0.72 N;精密加工后的氧化铝陶瓷的表面粗糙度值可达0.438 μm。   相似文献   

18.
采用电镀金刚石砂轮对45钢进行超声干磨削实验,研究了磨削深度、砂轮速度、工件速度和超声振幅对工件表面残余应力的影响。结果表明:在干磨削工况下,添加超声振动能增大表面残余压应力,磨削深度和工件速度的增加对增大残余压应力有益,而砂轮速度的增大将使残余压应力减小。  相似文献   

19.
针对航空发动机常用材料钛合金TC17,采用白刚玉砂轮与微晶刚玉砂轮开展磨削试验,研究微晶刚玉砂轮对工件表面质量和磨削力大小的影响规律。试验结果表明:微晶刚玉砂轮磨削后工件表面质量更好,表面粗糙度值降低0.14 μm,磨削力降低10%左右。针对微晶刚玉砂轮进行磨削参数对磨削力影响规律的单因素试验,从磨削力角度分析微晶刚玉砂轮磨削钛合金的合理工艺参数。综合磨削力与加工效率因素,确定磨削钛合金TC17的合理参数为:砂轮线速度vs=27 m/s、磨削深度ap=0.01 mm、工件进给速度vw=12 m/min;对磨削力试验数据进行多元线性回归分析,建立了法向磨削力和切向磨削力的回归模型。   相似文献   

20.
为探究CFRP砂轮与钢基体砂轮在高速磨削过程中的动力学特性,在数控凸轮轴磨床上搭建振动测试试验平台,开展磨削过程的动力学特性试验,研究2种砂轮在不同线速度和不同进给速度下的振动信号变化,并测量磨削后工件的表面粗糙度。结果表明:CFRP砂轮主轴系统的各阶固有频率高于钢基体砂轮主轴系统的各阶固有频率,且磨削过程中激发的优势频率处于高频区域。随着砂轮线速度的增大,GCr15工件表面粗糙度随之发生波动,CFRP基体砂轮磨削表面的粗糙度明显变小,较钢基体砂轮磨削表面的粗糙度减小30%~35%。颤振发生前后,CFRP基体砂轮磨削的表面粗糙度由0.089 μm变为0.091 μm,粗糙度增大2.2%;钢基体砂轮磨削的表面粗糙度由0.135 μm变为0.146 μm,粗糙度增大8.2%。在线速度一定的条件下,随着砂轮进给速度的增加,CFRP砂轮和钢基体砂轮磨削的工件表面粗糙度值都有增加,分别为2.4%和2.9%,但相较于砂轮线速度对工件表面粗糙度值的影响,进给速度对工件表面粗糙度值的影响更小。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号