首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In this work, effects of coolant chemistry, including concentrations of chloride ions and ethylene glycol and addition of various ions, on corrosion of 3003 Al alloy were investigated by electrochemical impedance spectroscopy measurements and scanning electron microscopy characterization. In chloride‐free, ethylene glycol–water solution, a layer of Al‐alcohol film is proposed to form on the electrode surface. With the increase of ethylene glycol concentration, more Al‐alcohol film is formed, resulting in the increase in film resistance and charge‐transfer resistance. In the presence of Cl? ions, they would be involved in the film formation, decreasing the stability of the film. In 50% ethylene glycol–water solution, the threshold value of Cl? concentration for pitting initiation is within the range of 100 ppm to 0.01 M. When the ethylene glycol concentration increases to 70%, the threshold Cl? concentration for pitting is from 0.01 to 0.1 M. In 100% ethylene glycol, there is no pitting of 3003 Al alloy even at 0.1 M of Cl?. Even a trace amount of impurity cation could affect significantly the corrosion behavior of 3003 Al alloy in ethylene glycol–water solution. Addition of Zn2+ is capable of increasing the corrosion resistance of Al alloy electrode, while Cu2+ ions containing in the solution would enhance corrosion, especially pitting corrosion, of Al alloy. The effect of Mg2+ on Al alloy corrosion is only slight.  相似文献   

2.
Corrosion behaviour of magnesium alloy‐based engine parts in cooling system is an urgent fundamental issue in automotive field where magnesium alloys are increasingly used. In the present work, the corrosion behaviour of AZ91D magnesium alloys in various ethylene glycol/water solutions was studied by electrochemical measurements and immersion tests at room temperature. The surfaces of the samples after immersion tests were examined using scanning electron microscope (SEM) and X‐ray diffraction (XRD). The results showed that the corrosion rates of AZ91D magnesium alloys decreased with the increase of ethylene glycol concentration in ethylene glycol/water solutions and the corrosion process was dominated by pitting corrosion. A continuous protective film transferred from corrosion products was formed on the corroded surface after sufficient immersion duration in ethylene glycol/water solutions, which is able to heal the corrosion pits. The self‐healing behaviour inhibited the further corrosion of AZ91D magnesium alloy.  相似文献   

3.
采用动电位阳极极化法对17%SiCp/2024Al基复合材料及其基体合金在3.5%NaCl水溶液中的耐蚀性进行了研究.结果表明:SiC颗粒的加入并不影响SiCp/2024Al基复合材料的点蚀敏感性,但与基体相比,其耐蚀性有所下降.对极化后和长期浸泡试样的腐蚀形貌观察发现:与基体相比,SiCp/2024Al基复合材料表面上的蚀孔数量相对较多,蚀孔尺寸稍小,大小分布不均匀;最大蚀孔较深,并有严重的裂缝腐蚀;裂缝腐蚀的存在会使SiCp/2024Al基复合材料的点蚀抗力明显降低.能谱分析表明:SiCp/2024Al基复合材料的腐蚀机制为富Cu阴极相与贫Cu阳极相间的电偶腐蚀,另外,SiC与Al间也存在电偶腐蚀倾向.  相似文献   

4.
Cu—Zn—Al形状记忆合金的缝隙腐蚀   总被引:9,自引:1,他引:8  
采有利民化学方法研究了Cu-Zn-Al形状记忆合金及其BTA钝化处理试样在Hank′s人工体液中的缝隙腐蚀行为。结果表明:在人工体液中,Cu-Zn-Al形状记忆合金的耐缝隙腐蚀性能优于未进行热处理的Cu-Zn-Al合金,其作用机理是单相马氏体组织改善了合金的电化学行为,抑制了活性溶解,缝隙腐蚀的发生是由于形成了金属离子浓差电池。经BTA钝化后,Cu-Zn-Al形状记忆合金的耐缝隙腐蚀性能得到改善。  相似文献   

5.
采用电化学测试技术研究了在人工模拟体液中pH值变化对离子注N人体用SUS316L不锈钢,Co-Cr合金,工业纯Ti和Ti-6Al-4V合金腐蚀行为的影响。结果表明,随着pH值的降低,试样的腐蚀电位负移,SUS316L不锈钢和Co-Cr合金的点蚀电位与缝隙腐蚀电位降低,使材料发生局部腐蚀的敏感性提高,工业纯Ti和Ti-6Al-4V合金的腐蚀电流密度增大,提高离子释放速度,加大对人体的潜在生理危害。  相似文献   

6.
This work aims to improve the corrosion rate of Ti6Al7Nb alloy and to increase its biocompatibility at the same time, obtaining polymer composite films based on polypyrrole/polyethylene glycol (PPy/PEG). The elaboration method was electrodeposition. FT‐IR analysis was performed in order to emphasize the formation of the PPy‐PEG composite film by incorporating PEG into the polymer structure. The paper is focussed on PEG (400 molecular weight) effect on the corrosion in bioliquids (as tested electrochemical bioliquid was chosen Hank's balanced salt solution) and on the biocompatibility properties. The PPy film significantly improves the biocompatibility of the Ti6Al7Nb alloy. The PEG presence in the polymerization solution leads to more stable composite polymer films on the titanium alloy surface with a better corrosion resistance and a more hydrophilic behaviour comparing with the PPy film. The increase of cell viability and proliferation potential as compared to the PPy film is not important.  相似文献   

7.
Corrosion behaviour of magnesium in ethylene glycol   总被引:1,自引:0,他引:1  
Corrosion of magnesium engine components by coolant is an important issue in the automotive industry where magnesium alloys may be used. It is of significance to understand the corrosion behaviour of pure magnesium in ethylene glycol solutions, as this can provide a basis for developing new coolants for magnesium alloy engine blocks. In this paper, through corrosion and electrochemical tests, it was found that the corrosion rate of magnesium decreased with increasing concentration of ethylene glycol. Individual contaminants, such as NaCl, NaHCO3, Na2SO4 and NaCl can make aqueous ethylene glycol solution more corrosive to magnesium. However, in NaCl contaminated ethylene glycol, NaHCO3 and Na2SO4 showed some inhibition effect. The solution resistivity played an important role in the corrosion of magnesium in ethylene glycol solutions, and the competitive adsorption of ethylene glycol and the contaminants on the magnesium surface was also responsible for the observed corrosion behaviours. The corrosion of magnesium in ethylene glycol can be effectively inhibited by addition of fluorides that react with magnesium and form a protective film on the surface.  相似文献   

8.
Noise measurements on crevice corrosion The importance of Al‐Mg‐Si‐alloys as an alternative to Al‐Cu‐Mg‐alloys has continuously increased in aircraft industry over the recent years. Al‐Mg‐Si‐alloys are corrosion resistant under normal atmospheric conditions. However localised corrosion, especially crevice corrosion, can be very dangerous. Pitting or crevice corrosion can be divided into an initial state and a propagation state of corrosion. The transition of a corrosion system from the passive state into the initial state of localized corrosion is characterised by the small fluctuation of the current and the potential. The measurement of this fluctuation is the subject of the electrochemical noise analysis (ENA). Therefore ENA leads to extensive knowledge about the activity of the corrosion system already in the pre‐damaged state. With the help of ENA the influence of crevice condition, potential and time on the initial state of the crevice corrosion on AA 6013 can be demonstrated.  相似文献   

9.
Erosion-corrosion (E-C) of 3003 aluminum (Al) alloy in ethylene glycol-water solutions were studied by weight-loss and electrochemical measurements as well as surface characterization through an impingement jet system. Al alloy E-C is dominated by erosion components, i.e., pure erosion and corrosion-enhanced erosion, which account for 92-97% of the total E-C rate under the various conditions in this work. Contribution from corrosion components, including pure corrosion and erosion-enhanced corrosion, is slight. With the increase of fluid flow velocity and sand concentration, the total E-C rate increases. Compared with the significant increase of the rates of erosion components, the increase of the rate of corrosion component is negligible. Upon fluid flow, passivity of Al alloy that develops in static solution cannot be maintained, and an activation mechanism dominates the corrosion process of Al alloy. The effect of fluid impact angle on Al alloy E-C depends on the competitive effect of normal stress and shear stress. Under normal impact, the surface film would be broken and damaged, but still remain on the electrode surface to provide somewhat protection. With the decrease of impact angle, shear stress becomes dominant, and it would thinner and even completely remove the film. The enhanced surface irregularity of electrode under fluid impact is indicated by the presence of inductive loop in EIS plots. The effects of impact angle on electrode surface status and E-C rate are confirmed by surface morphology observation.  相似文献   

10.
The exfoliation corrosion susceptibility and electrochemical impedance spectroscopy (EIS) of 7150 Al alloys with T6, T73, and RRA (retrogression at 175 °C for 3 h) tempers in EXCO solution were investigated. The anodic equilibrium precipitate η(MgZn2) is continuous or closely spaced at the grain boundaries in the 7150‐T6 Al alloy, resulting in its greatest susceptibility to exfoliation corrosion. The grain boundary η precipitates in the RRA and T73 treated 7150 Al alloys are coarsened and show a clear discontinuous nature; they possess similar exfoliation corrosion sensitivity and their exfoliation corrosion resistance is greatly increased. At the beginning of immersion in EXCO solution, the EIS plot of the 7150 Al alloys is composed of a capacitive arc in the high to medium frequency range and an inductive component in the medium to low frequency range. As immersion time is increased, exfoliation corrosion with different corrosion ratings occurs on the surface of the 7150 Al alloy with various tempers, two capacitive arcs appear in the high to medium and medium to low frequency ranges, respectively. The fitted medium to low frequency capacitance C2 of 7150‐T6 Al alloy, corresponding to the new surface caused by the exfoliation corrosion, is much greater than that of the T73 and RRA treated 7150 Al alloy, which is consistent with the greatest exfoliation corrosion susceptibility of the 7150‐T6 Al alloy.  相似文献   

11.
Corrosion is an important issue for cast Al alloy in an engine cooling system, but how the microstructural features affect the coolant‐related corrosion behaviour is not well understood. In this research, the evolution of corrosion in an ISO 2379 cast Al alloy was studied in an antifreeze radiator coolant under heat‐rejecting conditions. Extensive analyses of microstructures and corroded surfaces were carried out using an optical microscope, scanning electron microscope equipped with energy dispersive spectroscopy and X‐ray diffractometer. Intergranular cavitation corrosion was observed to occur at interfaces between α‐Al matrix and intermetallics (Al2Cu and Al5FeSi) or to a less degree at interfaces between α‐Al matrix and Si phase. The large area fraction of the cathodic phases (Al2Cu, Al5FeSi and Si) led to the galvanic coupling between them and the adjacent anodic α‐Al matrix. The heat‐rejecting condition in antifreeze radiator coolant was favourable condition to cavitation process while severe crevice corrosion was predominant at oxygen‐depleted regions in the heat‐transfer corrosion cell.  相似文献   

12.
采用电化学方法和扫描电子显微镜研究了油酸钠对AM60镁合金在50%(体积分数)乙二醇-水溶液中的缓蚀作用。结果表明:油酸钠能抑制AM60镁合金在乙二醇-水溶液中的腐蚀,是一种阳极型缓蚀剂,随着油酸钠量的增加,缓蚀率逐渐增大;油酸钠在常温和高温下对AM60镁合金在乙二醇-水溶液中均有较好的缓蚀作用,且常温下油酸钠的缓蚀效果更好;油酸钠在AM60镁合金表面的吸附为自发过程,且符合Temkin吸附等温方程。  相似文献   

13.
The influence of chloride ions on the corrosion of AZ91 magnesium alloy in water/ethylene glycol solutions and the inhibiting effect of lactobiono‐tallowamide (LTA) were investigated using electrochemical and surface analysis methods. Potentiodynamic polarization curves in aqueous solution of ethylene glycol (50:50w%) containing 0.1 g.L−1 chloride and up to 0.5 g.L−1 LBT were obtained at room and at elevated temperatures. The chloride anions showed a distinct deteriorating effect as they caused pit initiation and accelerated the dissolution of the tested alloy. The selected organic compound demonstrated good protective properties against corrosion of AZ91 magnesium alloy and behaved as inhibitor of mixed type hindering both the cathodic and the anodic partial reactions. It showed inhibition efficiency of 77% at relatively low concentration of 0.2 g.L−1 and was considered as a promising corrosion inhibitor. The mechanism of inhibition was discussed on the basis of the electrochemical impedance spectroscopy (EIS) and XRD analysis of the surface.  相似文献   

14.
AZ91镁合金在冷却系统中的耐腐蚀性   总被引:1,自引:0,他引:1  
运用电化学方法研究一种水杨酸Schift 碱化合物(Salcn)对AZ91镁合金在30%乙二醇水溶液(30%EG/W)中的腐蚀行为的抑制作用。用扫描电镜观察合金在30%乙二醇水溶液(30% EG/W)中的腐蚀前、后的形貌。在室温下,添加这种水杨酸Schift碱化合物对AZ91镁合金的腐蚀抑制作用不明显,但在高温下,由于合金表面化学吸附了抑制剂而使其耐腐蚀性得到增强;随着抑制剂浓度的增加,镁合金表面吸附更多的抑制剂,从而使抑制作用的增强。  相似文献   

15.
模拟体液中纯钛及Ti6A14V合金的腐蚀行为   总被引:2,自引:0,他引:2  
采用电化学测试技术研究了人体医用金属材料工业纯钛和Ti6A14V合金在人工模拟体液中的腐蚀行为,结果表明,阳极极化后两种合金均未发现点蚀,工业纯钛的维钝电流密度小于于Ti6A14V合金,前者的阳极极化性能优于后者,Ti6A14V合金缝隙试样在阳极电位超过+2000mV(vsSCE)后,电流开始急剧增大,发生了缝隙腐蚀;通过电子探针分析发现,在缝隙内Al和V两种元素发生活性溶解。工业纯钛在电位达到+4000mV/(vsSCE)时仍没有发生缝隙腐蚀。  相似文献   

16.
钛的缝隙腐蚀行为研究   总被引:3,自引:0,他引:3  
采用电化学测试技术,研究了工业纯钛和Ti-0.3%Mo-0.8%Ni合金在25%NaCl和HCl沸腾溶液中的缝隙腐蚀行为。结果表明,由于合金元素Ni具有低的氢超电势,促进了阴极极化过程,从而提高了钝化能力,且缝内表面Ni的富集增强了膜的钝化稳定性,因此,Ti-0.3%Mo-0.8%Ni合金抗缝隙腐蚀性能优于工业纯钛。  相似文献   

17.
Abstract

Stiffening of Al alloy aircraft structures with carbon fibre reinforced plastic laminate called ‘patches’ is considered as a viable option to enhance fatigue life. Interface so created between the reinforcement and Al alloy structure is potential site for crevice corrosion attack. Therefore, studies were conducted to investigate the interface corrosion behaviour of peak and two-step aged Al–Zn–Mg–Cu–Cr alclad alloy with and without the patch and examine the possibility to control the interfacial attack with the addition of cerium chloride inhibitor exposed to 3·5 wt-% NaCl solution for the durations of 2 and 168 h. Electrochemical impedance spectroscopy revealed that the interface attack was significantly reduced by the addition of 1000 ppm cerium chloride. The response of the peak and two-step aged alloy for such an addition was further investigated and found that the alloy under step aged condition behaves better than that of the peak aged condition.  相似文献   

18.
热钾碱脱碳液304不锈钢管束再沸器投用2年后发生了腐蚀泄漏,检查发现腐蚀发生在管子与管板之间的缝隙中.用电化学方法和能谱分析技术,对304不锈钢换热管及16 Mn管板在热钾碱脱碳液中的极化行为及管子表面腐蚀区的腐蚀产物进行了分析,结果表明:换热器管束的腐蚀是由于缝隙内外五价钒浓差造成的16 Mn管板的活化—钝化短路电池所引起,缝隙内闭塞电池的形成加速了缝隙内16 Mn的溶解速度,并使缝隙内介质酸化及Cl-等阴离子富集,导致304不锈钢管子的腐蚀.   相似文献   

19.
L.Y. Xu 《Corrosion Science》2008,50(7):2094-2100
An impingement jet system was used to study flow-assisted corrosion (FAC) of 3003 aluminum (Al) alloy in ethylene glycol-water solutions that simulates the automotive coolant by corrosion potential and electrochemical impedance spectroscopy (EIS) measurements as well as computational fluid dynamics (CFD) simulation. The effects of solution pH and fluid impact angle on Al FAC were determined. An increase of solution pH enhances the activity of Al due to dissolution of Al oxide film in alkaline environment. Moreover, Al activity decreases with the increasing fluid impact angle to the specimen. A CFD simulation shows that, with the increase of impact angle, the electrode area under high-velocity flow field decreases and that under low-velocity flow field increases. Consequently, the shear stress generated on electrode surface and the resultant mechanical effect on electrode activity decreases. Therefore, the electrode is more stable than that impacted at a smaller impact angle. There is an essential role of fluid hydrodynamics in corrosion of Al electrode, which is confirmed by corrosion potential and EIS measurements as well as CFD analysis.  相似文献   

20.
The resistance of both AISI 316L stainless steel (AISI 316L SS) and commercially pure titanium (cpTi) to localized corrosion in a simulated body fluid solution was investigated using numerical simulations. The resulting model, based on transport equations in dilute solutions, is designed to predict the susceptibility of these two biomaterials to crevice corrosion initiation. The results show that cpTi and AISI 316L SS alloy are very resistant to the initiation of crevice corrosion in 0.9% NaCl solution and AISI 316L SS alloy is more susceptible to corrosion initiation over the long term than cpTi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号