首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用柠檬酸法和EDTA-柠檬酸联合络合法分别制各球状和针状纳米晶复合SrM铁氧体.用透射电镜、X射线衍射仪和振动样品磁强计对合成样品的粒度及形貌、物相、磁学性能进行研究.结果表明:当煅烧温度为850℃时,样品为纯的肘型六角锶铁氧体,且矫顽力达到最大;当温度低于850℃时,样品存在复相,直接煅烧的样品为SrFe12O19/α-Fe2O3纳米复合相,通过自蔓延燃烧处理的样品为SrFe12O19/γ-Fe2O3的纳米复合相.在750℃时制得的样品与纯的M型六角锶铁氧体相比,剩余磁化强度和饱和磁化强度有所提高.通过加入EDTA使锶铁氧体的形貌发生改变,矫顽力得到提高,最终制得粒径为30 nm,长径比为5:1,内禀矫顽力、比饱和磁化强度与比剩余磁化强度分别为6198.3×79.6 A·m-1、71.5A.m2·kg-1和42.3 A·m2·Kg-1的针状纳米复合SrM铁氧体.  相似文献   

2.
热处理对Nd2Fe14B/α-Fe纳米复相磁体性能的影响   总被引:1,自引:0,他引:1  
为改善纳米复合永磁合金的磁性能,用熔体快淬和晶化热处理的方法制备了纳米复相Nd2Fe14B/α-Fe永磁体,研究了热处理工艺对Nd8Fe77B6Co8Nb1纳米晶复合磁体磁性能的影响.结果表明,热处理温度和时间明显影响纳米晶的形成及其磁性能.该纳米复合磁体在700℃×7min进行热处理时,可获得较好的磁性能,其矫顽力Hci=692kA/m,剩余磁感应强度Br=0.50T,最大磁能积(BH)max=51kJ/m3.  相似文献   

3.
为了制备出形貌各异且磁性能好的SrFe12O19,首先采用正交实验设计,考察了pH值、用水量、柠檬酸用量、煅烧时间、煅烧温度对粒子性能的影响.得出柠檬酸法制备分散均匀、粒度较小的球状纳米SrFe12O19的最佳工艺条件,在此条件下,煅烧时按干凝胶与无机模板剂的质量比为1:3加入KCl﹑KBr﹑KI后,分别制得了针状﹑棒状﹑空心球形状的纳米SrFe12O19,与不加无机模板剂制得的球形相比,形貌发生极大的变化.利用IR、TEM﹑XRD和VSM等测试手段对煅烧后的纳米SrFe12O19进行表征,分析了煅烧过程中不同阴离子的加入对最终SrFe12O19粒度、形貌、物相和磁性的影响.并就阴离子对形貌的影响机制作了初步探究.  相似文献   

4.
纳米钡铁氧体的制备与磁性研究   总被引:1,自引:0,他引:1  
采用溶胶凝胶法在不同pH值和煅烧温度条件下制备了M型纳米钡铁氧体样品,利用X射线衍射、场发射扫描电镜以及振动样品磁强计研究了溶液pH值和煅烧温度对纳米钡铁氧体的微结构和磁性能的影响.实验结果表明:溶液pH值及煅烧温度对钡铁氧体的相结构和磁性能都有很大影响.当溶液pH值在3以上时,有利于BaFe12O19相的形成,纳米钡铁氧体的晶粒尺寸约50 nm,饱和磁化强度Ms和矫顽力Hc在pH=7时达到最高.对于pH=7的样品,在700℃左右开始有BaFe12O19相形成,同时伴有较多量的α-Fe2O3和少量的BaFe2O4与BaCO3杂相.随着温度的升高,BaFe12O19主相不断形成积累,杂相逐渐减少,当煅烧温度为800℃时,样品基本上为纯BaFe12O19相,经900℃热处理后样品磁性能最佳:饱和磁化强度达到Ms=61.6(A·m2)/kg,矫顽力为Hc=4.56×105A/m.  相似文献   

5.
采用微磁学模拟软件OOMMF详细研究了软磁相厚度对SrFe_(12)O_(19)/α-Fe纳米复合双层膜体系磁性能的影响。结果显示,固定硬磁相厚度10nm,随着软磁相厚度(Ls)的增加,体系由完全耦合的单相反转行为转变为软磁相部分优先形核的两相反转行为,并表现出显著的剩磁增强效应,矫顽力逐渐降低;最大磁能积随着软磁相厚度的增加,先增大后减小,并在Ls=5nm时取得峰值,达到165.57kJ/m~3,远远超过目前单相高性能铁氧体的最大磁能积40kJ/m~3。  相似文献   

6.
曹夕龙  唐笑 《表面技术》2014,43(4):142-148
目前,制备纳米管阵列结构α-Fe2O3成为一种有效解决α-Fe2O3导电性差、电子-空穴复合率高和空穴扩散长度短等问题的重要技术。综述了铁表面阳极氧化法制备α-Fe2O3纳米管阵列的研究进展,主要包括阳极氧化过程中α-Fe2O3纳米管阵列形成机制、制备影响因素(溶液组成、工艺条件和热处理工艺)及其光催化水处理、光催化产氢和电容器领域的应用,并评述了α-Fe2O3纳米管阵列薄膜的应用前景和研究中存在的问题。  相似文献   

7.
为了制备出形貌各异且磁性能好的SrFel2O19,首先采用正交实验设计,考察了pH值、用水量、柠檬酸用量、煅烧时间、煅烧温度对粒子性能的影响。得出柠檬酸法制备分散均匀、粒度较小的球状纳米SrFe12O19,的最佳工艺条件,在此条件下,煅烧时按干凝胶与无机模板剂的质量比为1:3加入KCl、KBr、KI后,分别制得了针状、棒状、空心球形状的纳米SrFel2O19,与不加无机模板剂制得的球形相比,形貌发生极大的变化。利用IR、TEM、XRD和VSM等测试手段对煅烧后的纳米SrFel2O19进行表征,分析了煅烧过程中不同阴离子的加入对最终SrFel2O19粒度、形貌、物相和磁性的影响。并就阴离子对形貌的影响机制作了初步探究。  相似文献   

8.
本文以提拉浸渍法使用聚苯乙烯(PS)球模板制备了有序多孔结构的锶铁氧体(SrFe12O19)薄膜。将微乳液聚合法合成的PS球,通过提拉浸渍法有序地组装在硅片基板上形成PS模板;使用溶胶-凝胶法制备SrFe12O19前驱体溶胶,再采用提拉浸渍法使SrFe12O19前驱体溶胶填充PS模板的空隙,在900 ℃保温2 h去除PS球后即制得多孔SrFe12O19薄膜。重点研究了聚乙烯吡咯烷酮(PVP)的含量对PS球微观形貌,浸渍时间对PS模板以及多孔SrFe12O19薄膜微观形貌的影响,并对多孔SrFe12O19薄膜的形成机理进行了讨论,建立了相应的模型。结果表明:添加0.2 g的PVP可得到粒径均匀的PS球,且微球之间空隙明显;将硅片在PS球乳液中浸渍10 s可得到单层有序的PS模板;当PS模板在SrFe12O19前驱体溶胶中浸渍10 s时可制备出孔径约200 nm的蜂窝状多孔结构的纯SrFe12O19相薄膜,其表现出优异的硬磁性能:饱和磁化强度为27.9 emu/g,剩磁为15.5 emu/g,矫顽力为2613.4 Oe。  相似文献   

9.
采用等离子喷涂Al-Fe2O3复合粉的方法制备陶瓷基复合材料涂层.利用X射线衍射仪、扫描电镜和透射电镜观察分析涂层的显微组织,并测定了涂层的结合强度、硬度、韧性和耐磨性能.结果表明,Al-Fe2O3复合粉在等离子喷涂过程中发生铝热反应生成了FeAl2O4、α-Fe和γ-Al2O3相.透射电镜分析表明,所制备的复合涂层呈现纳米结构的显微组织,其中几十到几百纳米的球状α-Fe和γ-Al2O3晶粒均匀地分散在等轴状和柱状的FeAl2O4纳米晶基体上.与传统的单相微米Al2O3涂层相比,复合涂层的结合强度、韧性和耐磨性明显提高,其原因主要是复合涂层为纳米结构并且存在塑性金属相Fe.  相似文献   

10.
SiO2/(γ-Fe2O3-SiO2)磁性催化剂载体的制备   总被引:2,自引:0,他引:2  
采用溶胶-凝胶法制备了具有高热稳定性的γ-Fe2O3-SiO2复合材料,并在其表面进行SiO2包覆,获得了纳米尺寸磁核的单分散球形SiO2/(γ-Fe2O3-SiO2)颗粒.X射线衍射分析、热重差热分析、扫描电镜、透射电镜以及振动样品磁强计等实验结果说明:Fe2O3-SiO2复合物经过700℃以上温度煅烧30 min后才出现γ-Fe2O3晶相,更高温度或者更长的煅烧时间将导致γ-Fe2O3向α-Fe2O3的转变;经SiO2包覆后得到的SiO2/(γ-Fe2O3-SiO2)为粒径均匀的单分散球形颗粒,颗粒尺寸在150~200 nm左右,内部核心为γ-Fe2O3颗粒,外层则被严密的SiO2包裹.通过将纯Fe3O4粉外层直接包覆SiO2做对比实验表明,SiO2/(γ-Fe2O3-SiO2)具有更加优异的磁性能,是一种优良的催化剂磁性载体.  相似文献   

11.
利用液相包裹法制备了纳米Fe颗粒包裹Al2O3,纳米复合粉体,研究了不同的煅烧和还原温度对复合粉体物相组成的影响,利用X-ray衍射(XRD)、热重/差式-量热扫描法(TG/DSC)、Zeta电位和扫描电镜(SEM)对复合粉体的成分、热学特性以及形貌特征进行了分析.结果表明:煅烧温度为500℃,保温30min,在氢气气氛中700℃还原1h可以得到Fe包裹Al2O3的纳米复合粉体;经SEM发现,包裹层的Fe颗粒呈球形,尺寸约为30 nm,分布均匀.  相似文献   

12.
碳钢表面Fe-W-ZrO2纳米复合电沉积层的组织结构分析   总被引:1,自引:0,他引:1  
采用复合电沉积方法,在碳钢表面制备了质量组成为的Fe 38.3%、W 52.7%、ZrO2-9%的Fe-W-ZrO2纳米复合镀层,研究了ZrO2纳米微粒、热处理对镀层组织和结构的影响.结果表明,弥散分布的ZrO2纳米微粒对Fe-W基质镀层的结构有明显影响,镀态下Fe-W-ZrO2纳米复合镀层内部结构致密无裂纹,呈明显非晶态结构特征;经500℃热处理后,复合镀层开始晶化析出α-Fe相,随着热处理温度升高,晶化相不断析出并长大,700℃时复合镀层晶化已基本完成,M6C型碳化物F3W3C相出现,与α-Fe相两相并存,继续加热至800%:时,F3W3C成为涂层主相.  相似文献   

13.
以FeCl3,C2H2O4,NaOH为原料,采用水热法200℃反应12h制备得到了α-Fe2O3纳米晶自组装的球形颗粒.利用X射线衍射仪、扫描电镜和透射电镜对所得产物进行了表征分析,并在室温下测量了其磁学性能.结果表明,所制备的α-Fe2O3纳米晶自组装的球形颗粒为三方晶系的单晶结构,其平均尺寸为300 nm.在室温下测试了球形颗粒的磁学特性,其矫顽力和剩余磁化强度分别为1543.34 Oe和0.10 emu/g,并根据α-Fe2O3纳米晶的形成与组装过程中的作用,并提出了可能生长机理.  相似文献   

14.
采用溶剂热法制备出具有尺寸可调、分散性好和强磁性的纳米γ-Fe2O3颗粒。分别采用XRD、XPS、FESEM、TEM和超导量子干涉仪(SQUID)对其结构、组分、形貌和磁性进行表征,研究氯化铁的浓度,不同的表面活性剂和反应温度对磁性纳米颗粒结构形貌和直径的影响。结果表明:制备得到的产物为反尖晶石结构、具有单分散性的γ-Fe2O3纳米颗粒,粒径在50~400 nm之间可调。反应温度对纳米颗粒的相组成和形貌影响比较显著,在140℃下得到α-Fe2O3相,在160℃下得到γ-Fe2O3相,而在180与200℃下得到Fe3O4相。纳米颗粒尺寸随着氯化铁浓度的增加而增大,随着十二烷基苯磺酸钠(SDBS)的加入而减小。在室温下,γ-Fe2O3纳米颗粒具有较强磁性,当粒径为50 nm时其矫顽力可以达到1.4 kA/m。这将在磁性复合光催化剂和生物医学领域具有潜在的应用价值。  相似文献   

15.
通过水热和热处理相结合的方法制备了具有核/壳结构的γ-Fe_2O_3/PZT和Pb Fe_(12)O_(19)/PZT磁电复合颗粒。选用Fe_3O_4纳米粒子作为磁性相核心,钙钛矿壳层的A位铅离子和B位锆、钛离子通过原位的水热反应形成致密包覆的非晶PZT层。经过650°C的热处理,PZT层开始结晶,同时Fe_3O_4核心转变成了γ-Fe_2O_3。经过750°C的热处理,壳层中的Pb向核心扩散形成了Pb Fe12O19相。两相具有良好的界面和有序取向生长特征。γ-Fe2O3-PZT和Pb Fe12O19-PZT的饱和磁化强度分别为18.47和17.79 A·m2/kg,其矫顽力分别为69.3×79.6和2552.7×79.6 A/m。  相似文献   

16.
采用三维模拟软件OOMMF对铁氧体纳米复合双层膜SrFe12O19/α-Fe进行微磁学模拟研究。结果显示,固定硬磁相厚度分别为10、15和20 nm,逐渐增大软磁相厚度,复合材料均表现出剩磁增强效应,计算(BH)max分别在软磁相厚度Ls=5 nm,6 nm和6 nm时取得最大值165.57,136.39和117.32 kJ/m3,是目前单相锶铁氧体的(BH)max(40 kJ/m3)的3~4倍左右。在软磁相厚度相同的条件下,随着硬磁相厚度的增加,复合材料的剩磁、最大磁能积逐渐减小,矫顽力略有增大,最佳的(BH)max在硬磁相厚度为10 nm时取得。磁矩反转过程随着硬磁相厚度的变化而表现出不同的特点。  相似文献   

17.
利用X射线衍射、透射电镜、振动样品磁强计和差热分析研究了非晶Sm5Fe80Cu1Zr3.5Si5B3C2.5合金中α-Fe/Sm2(Fe,Si)17Cx复合纳米相结构的形成过程、磁性及其晶化动力学.XRD结果表明,随着退火温度的升高,Sm5Fe80Cu1Zr3.5Si5B3C2.5非晶合金先后析出软磁相α-Fe和硬磁相Sm2(Fe,Si)17Cx;当经高温750℃晶化退火后,经Scherrer计算得到合金中α-Fe相和Sm2(Fe,Si)17Cx的晶粒尺寸分别为65.5和22.1nm,其矫顽力增加到58.11kA/m,剩磁为0.967T.晶化动力学分析发现,这种具有较低初始晶化激活能和阶段生长激活能的晶化行为是导致α-Fe相晶粒生长过于粗大和合金中α-Fe和Sm2(Fe,Si)17Cx复合纳米磁体磁耦合性能较差的根本原因.  相似文献   

18.
用溶胶凝胶法制备纳米SrFe12O19磁性粉末,并用磁强计检测SrFe12O19粉末的磁性能,在NiTi合金、316L不锈钢表面用溶胶凝胶法制备含SrFe12O19磁性粉末的TiO2薄膜,并用X射线衍射仪分析薄膜成分.测试不同层数薄膜的微磁场强度,并对这些薄膜测定动态凝血时间和溶血率,以研究不同的表面微磁场强度对材料血液相容性的影响.结果表明:材料表面的微磁场强度愈高,材料血液相容性愈好.  相似文献   

19.
采用水热法制备了不同镍锌比的纳米NixZn1-xFe2O4粉体.采用X射线衍射、透射电镜(TEM)、振动样品磁强计(VSM)等方法对制备的样品进行了表征,物相分析结果表明,在200℃水热5 h可以得到纯的纳米NiFe2O4粉体,在200℃水热5 h制备的Ni0.5Zn0.5Fe2O4中含有γ-Fe2O3,在220℃水热5 h可以得到纯Ni0.5Zn0.5Fe2O4纳米粉体.水热温度为220℃时制备的ZnFe2O4中仍然存在γ-Fe2O3.TEM结果表明,NixZn1-xFe2O4粒子为球形,粒径为10~20nm.磁滞回线结果表明纳米NixZn1-xFe2O4具有较好的磁性能,其中Ni0.5Zn0.5Fe2O4纳米粒子具有最大的饱和磁化强度(Ms),ZnFe2O4具有最大的矫顽力(Hc)值.  相似文献   

20.
采用熔体快淬及晶化退火工艺制备了纳米双相(Nd,Pr)2Fe14B/α-Fe型磁体,研究了Nb和Zr的添加对磁体磁性能、微观结构和晶化行为的影响。结果表明:添加Nb和Zr可提高α—Fe相的晶化温度,抑制α—Fe的析出和长大,避免亚稳相的形成,从而提高硬磁相的体积百分比。Nb和Zr复合添加能细化晶粒,增强硬磁相和软磁相问的交换耦合作用,显著提高纳米晶双相永磁合金的磁性能。合金(Nd,Pr)2Fe14B/α-Fe经过最佳热处理后,磁性能达到Br=1.10T,iHc=534.2kA/m,(BH)max=143.6kJ/m^3。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号