首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用干压擦筛造粒法制备了炭黑造粒颗粒,研究了炭黑造粒颗粒质量分数对Cu-Fe摩擦材料显微组织、力学性能、摩擦性能的影响。结果表明:炭黑造粒颗粒易被压制成条状形态,当炭黑造粒颗粒质量分数较低时,其与金属基体能形成完整的界面,而含量较高时界面易出现孔洞和裂纹;随着炭黑造粒颗粒质量分数的增加,摩擦材料的力学性能先增加后降低、摩擦系数和磨损量均先降低后增加。当炭黑造粒颗粒质量百分数为5%时,摩擦材料的力学性能最大,摩擦系数最低,磨损量最小,材料的综合性能最佳。  相似文献   

2.
采用干法混料、一次成型模具制备不同含量Cu-Sn合金粉的摩擦材料,对样品进行理化性能、力学性能、摩擦性能及制动噪音的检测,借助SEM、XRD对试样摩擦表面进行表征,研究分析不同Cu-Sn合金粉含量对摩擦材料性能的影响。结果表明:随着铜锡合金粉含量的增加,摩擦材料的密度逐渐增加、气孔率略微升高、pH值基本保持不变;硬度先增后减,压缩量先减后增,剪切强度变化不大。低能载条件下,Cu-Sn合金粉对材料的摩擦因数影响不大,高能载条件下,适量Cu-Sn合金粉的加入能提高材料摩擦因数,降低磨损量,改善制动噪音。当铜锡合金粉含量为9%(质量分数)时,摩擦材料的综合性能最佳。  相似文献   

3.
采用干法混料、一次成型模具制备不同含量Cu-Sn合金粉的摩擦材料,对样品进行理化性能、力学性能、摩擦性能及制动噪音的检测,借助SEM、XRD对试样摩擦表面进行表征,研究分析不同Cu-Sn合金粉含量对摩擦材料性能的影响。结果表明:随着铜锡合金粉含量的增加,摩擦材料的密度逐渐增加、气孔率略微升高、pH值基本保持不变;硬度先增后减,压缩量先减后增,剪切强度变化不大。低能载条件下,Cu-Sn合金粉对材料的摩擦因数影响不大,高能载条件下,适量Cu-Sn合金粉的加入能提高材料摩擦因数,降低磨损量,改善制动噪音。当铜锡合金粉含量为9%(质量分数)时,摩擦材料的综合性能最佳。  相似文献   

4.
铝基复合材料的摩擦磨损性能   总被引:13,自引:0,他引:13  
王文龙  吴军华  张国定 《金属学报》1998,34(11):1178-1182
在制动试验条件下,研究铝基复合材料的摩擦磨损性能,研究结果表明:与铸铁材料相比,铝基复合材料能大大地降低摩擦表面温度,其摩擦系数可在较大载荷,较高转速下保持稳定,有利于制动性能的提高,复合材料在不同摩擦试验后的磨损量与SiC含量和基体种类有关。在相同摩擦条件下,磨损量随颗粒含量增加而减少,与铸铁材料相比,它具有重量轻,导热快,摩擦系数稳定,不产生热裂,是较适宜的制动盘材料。  相似文献   

5.
以碳纤维为增强体,以树脂为粘结剂,运用模压成型-无压烧结法制备了Cf/SiC陶瓷基制动材料.研究了碳纤维分布、碳纤维长度和纤维体积分数对Cf/SiC复合材料摩擦磨损性能的影响.结果表明:当碳纤维以纤维单丝状态分布时,纤维与基体结合界面增多,纤维能充分发挥增强增韧作用,使材料的摩擦磨损性得到提高;随着碳纤维长度的增加,磨损量先减小后增加;随着碳纤维含量的增加,磨损量先减小后增大.  相似文献   

6.
以还原铁粉、电解铜粉、鳞片状石墨粉制备成形的混合料为原料,经压制烧结得到了Fe-xCu-0.7C(x=10、15、20和25 mass%)粉末冶金轴承材料。采用扫描电镜、洛氏硬度计、万能材料试验机及摩擦磨损试验等研究了烧结体试样的显微组织、硬度、压溃强度及摩擦磨损性能,分析了Cu含量对烧结体试样的孔隙率、显微组织和力学性能的影响。结果表明:烧结体试样的显微组织主要由珠光体、铁素体、Cu相以及孔隙组成,随着Cu含量从10%增加到25%,烧结体的开孔隙率和硬度降低,压溃强度先升高后降低,摩擦系数以及体积磨损量先降低后升高。当Cu含量为15 mass%时,Fe-15Cu-0.7C烧结体试样的综合性能较好,其密度、硬度、压溃强度、摩擦系数以及体积磨损量分别为6.14 g/cm3、51.81 HRB、419.96 MPa、0.23和0.2145 mm3。  相似文献   

7.
目的 研究二硫化钼(MoS2)颗粒粒径对热塑性聚氨酯(TPU)高分子材料的自润滑性能和耐磨性能的影响规律,提升TPU的摩擦学性能。方法 选用4种不同粒径(50、500 nm和5、50 μm)的MoS2颗粒,通过物理共混的方式制备新型MoS2/TPU复合材料,基于RTEC多功能摩擦磨损实验机,开展水润滑条件下的摩擦磨损试验。通过分析比较改性TPU的力学性能、摩擦系数、磨痕轮廓、表面形貌及其摩擦副接触面的元素组成与分布情况,揭示MoS2不同粒径尺寸对TPU的摩擦磨损机理的影响机制。结果 MoS2虽然削弱了TPU的部分力学性能,但摩擦过程中形成的MoS2润滑膜有效降低了TPU的摩擦系数和磨损程度。改性TPU的拉伸强度和断裂伸长率随着MoS2粒径减小呈现先增高、后降低的趋势。500 nm MoS2改性的TPU拉伸强度和断裂伸长率最大,分别为33.80 MPa和334.55%。改性TPU的平均摩擦系数和体积行程磨损率均随着MoS2粒径的减小呈现先降低、后增高的趋势,500 nm MoS2改性TPU的平均摩擦系数和体积行程磨损率最小,当载荷为40 N时分别降低了58.1%和97.8%。长时的摩擦磨损试验表明,Al2O3陶瓷球与500 nm MoS2改性的TPU磨损之后的表面S、Mo元素质量分数之和最高,为34.95%,说明小粒径MoS2更加有利于持续转移并稳定吸附在磨损表面。结论 适当粒径MoS2有利于磨损界面MoS2润滑膜的形成和抑制TPU力学性能的削弱,降低改性TPU摩擦系数和磨损量。该研究可为设计具有优异低摩擦、耐磨损性能的新型水润滑轴承复合材料提供参考。  相似文献   

8.
为了改善石墨烯在铜基体中的分散性和界面结合性,采用溶液混合法、球磨法使石墨烯包覆铜粉颗粒,采用真空热压烧结法制备石墨烯/铜基(GR/Cu)复合材料。利用扫描电子显微镜(SEM)观察复合粉体形貌,测试材料的致密度、硬度、导电性及摩擦磨损性能,并根据摩擦表面形貌分析磨损机制。结果表明:石墨烯能够均匀分散在铜基体中,随着石墨烯含量的增加,复合材料的硬度呈先增加后减小的趋势。当石墨烯质量分数为0.3wt%时复合材料综合性能较好,显微硬度为80 HV,比纯铜提高了12.7%,磨损量比纯铜减少了33%。  相似文献   

9.
含铬蠕墨铸铁摩擦磨损性能研究   总被引:1,自引:0,他引:1  
用自制的干摩擦磨损试验机.研究了含铬蠕墨铸铁在不同接触压力及不同摩擦速度时的干摩擦磨损性能。结果表明:随着接触压力和摩擦速度的提高,含铬蠕墨铸铁的磨损量呈线性增加,摩擦系数先降低而后趋向于相对稳定;随着含铬量增加,蠕墨铸铁的磨损量降低,摩擦系数在碳化物含量为5%~6%左右时出现极大值;在试验条件下,含铬蠕墨铸铁的摩擦磨损性能优于普通蠕墨铸铁。  相似文献   

10.
将纳米氮化钛颗粒分散到水基础液中,加入适量的分散剂,采用两步法可制备出具有良好分散稳定的水基纳米氮化钛流体。在此基础上,采用单一变量法,用M-200磨损试验机研究了这种纳米流体对钢环的磨损性能,并对其摩擦润滑机理进行了分析。结果表明:摩擦系数与磨损量随负荷的增加表现出先减小后增大的趋势,并且当质量分数为1%的PVP与CTMAB混合液作为分散剂、粒径为20nm且质量分数为1%的氮化钛颗粒、分散介质为去离子水时表现出最佳的润滑性能。  相似文献   

11.
目的 解决截齿磨损失效问题,研究不同WC颗粒含量对42CrMo截齿激光熔覆Co基/WC复合涂层表面形貌及裂纹率、显微硬度、耐磨/耐腐蚀性能的影响机制。方法 通过在42CrMo截齿基体上制备Co基/WC复合涂层,利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、能谱仪(EDS)、显微硬度计、摩擦磨损试验仪及电化学工作站测试不同WC颗粒含量对熔覆层性能的影响。结果 Co基/WC复合涂层表面较为平整,当WC颗粒质量分数大于30%时,熔覆层表面开始出现交错裂纹;当WC质量分数为80%时,裂纹率增加35%。Co基/WC复合涂层的显微硬度皆高于42CrMo基体(378HV0.2),随着WC颗粒含量的增加,熔覆层平均显微硬度从448HV0.2提升到890HV0.2。Co基/WC复合涂层的摩擦系数、磨损量均小于42CrMo基体,WC颗粒质量分数增加到80%时,熔覆层平均摩擦系数为0.270,为基体(0.567)的50%,磨损量仅为1.0 mg,相比于42CrMo基体(18.6 mg)降低了约95%,低WC颗粒含量以黏着磨损为主,高WC含量以磨粒磨损为主。熔覆层耐腐蚀性能随WC含量的增加先增大、后减小,WC质量分数为30%时,熔覆层的耐腐蚀性能最好,具有最小的电流密度(1.465×10–7 A/cm2),相比基体电流密度(8.031×10–6 A/cm2)降低了98%。结论 WC颗粒含量对Co基/WC复合熔覆层的裂纹敏感性有显著影响,WC颗粒的细晶、弥散及固溶强化使熔覆层的显微硬度、耐磨/耐腐蚀性能得到明显改善。  相似文献   

12.
仇溢  种详远  甄明晖  王傅巍 《表面技术》2021,50(3):276-283, 322
目的 提高树脂基摩擦材料和对偶件刹车盘的摩擦磨损性能.方法 采用摩擦材料预混料装置,结合犁耙式混料机,将氧化石墨烯(GO)均匀分散到酚醛树脂基制动摩擦材料中.对材料进行物理性能和力学性能测试,采用LINK2900惯量台架试验机进行摩擦磨损研究,采用SEM和EDS进行摩擦界面微观形貌和成分分析.结果 当GO体积分数从0增加到1.00%时,摩擦材料的比热容、摩擦界面切向热导率和剪切模量显著增大,摩擦材料的弹性模量减小.确定了GO的最佳体积分数为0.75%,此体积分数下,名义摩擦系数和一衰系数达到最大,分别为0.437和0.363,摩擦材料和对偶件刹车盘的耐磨性最佳.相比未添加GO配方,摩擦材料的磨损量减小13.70%,对偶件刹车盘的磨损量减小12.32%.结论 适宜体积分数的GO提高了基体树脂的热结构稳定性、耐热性和系数稳定性,摩擦材料和对偶件刹车盘表面发生材料转移形成摩擦层,有效改善了摩擦材料表面裂纹和对偶盘表面孔洞.GO改变了摩擦片和盘之间的热流分配以及垂向传导散热和切向对流散热比例,可有效提高摩擦材料和对偶件的摩擦磨损性能.  相似文献   

13.
通过真空热压烧结工艺制备了单一纳米、单一微米及其混合颗粒增强的Al-Si复合材料,测试了这些颗粒增强AlSi复合材料的摩擦磨损性能,并分析了其磨损机理。结果表明,与基体材料相比,颗粒增强Al-Si复合材料的体积磨损量明显降低,当纳米SiC_p含量为3%时,随着微米SiC_p含量的增加,纳微米SiC_p/Al-Si复合材料的体积磨损量先减小后增加。当增强颗粒含量为3%的纳米+15%的微米时,复合材料的体积磨损量最小,耐磨性较基体材料提高58.2%。利用扫描电镜对纳微米SiC_p/Al-Si复合材料的磨损形貌进行观察,发现复合材料的磨损机制主要为磨粒磨损。  相似文献   

14.
目的 为改善石墨与铜铁基摩擦材料的结合方式,探究不同含量的镀铜石墨对铜铁基摩擦材料组织结构的影响,并研究加入不同含量的镀铜石墨时,摩擦材料的摩擦性能和摩擦机理。方法 采用热压烧结法制备Fe-25Cu基摩擦材料,利用扫描电镜、X射线衍射等表征手段进行表征,并利用摩擦磨损试验机测试摩擦材料的摩擦性能,分析摩擦因数。摩擦试验后的材料利用扫描电镜进行表面观测,分析摩擦磨损机理。计算材料摩擦后的磨损量,以此分析镀铜石墨含量对摩擦材料的影响。结果 相同转速下随着镀铜石墨含量的增加,平均摩擦因数降低,当镀铜石墨的质量分数为9%时,摩擦因数曲线最平稳;随着镀铜石墨含量的增加,摩擦因数逐渐降低,磨损率先减少后增加。当加入9%的镀铜石墨时,该材料的摩擦性能最好,此时材料的摩擦因数为0.436,磨损率最低为0.023 mm;黏着磨损和磨粒磨损是添加镀铜石墨的摩擦材料的主要摩擦机理。结论 在Fe-25Cu基摩擦材料中镀铜石墨与基体的结合情况优于石墨与基体的结合,同时加入镀铜石墨Fe-25Cu基摩擦材料的摩擦因数高,磨损量小。  相似文献   

15.
碳纳米管增强铝基复合材料的制备及摩擦磨损性能   总被引:1,自引:0,他引:1  
采用粉末冶金常压烧结与高温模压和热挤压相结合的工艺制备了碳纳米管增强铝基复合材料,以探索复合材料的低成本制备技术。采用扫描电镜、万能材料试验机和摩擦磨损试验机研究了碳纳米管的添加量对复合材料力学性能和摩擦磨损性能的影响。结果表明,随着碳纳米管含量的增加(质量分数0~2%),复合材料的硬度逐渐升高,抗拉强度先升高后下降。当碳纳米管含量为1.5%时抗拉强度达370 MPa,硬度和抗拉强度分别比纯铝提高了433%和236%。当碳纳米管含量为2%时,复合材料的摩擦因数和磨损量分别比纯铝降低了63%和14%。  相似文献   

16.
张栗源  董从林  袁成清  吴宇航 《表面技术》2021,50(11):208-217, 278
目的 探究石墨烯/高密度聚乙烯高分子材料在水润滑条件下的摩擦学性能,提高高密度聚乙烯的自润滑和耐磨损性能.方法 采用石墨烯纳米片填充高密度聚乙烯材料,利用RTEC摩擦磨损试验机,开展新型复合材料在水润滑条件下的摩擦学性能研究.通过分析新型复合材料的典型机械性能、摩擦系数、磨损形貌以及摩擦副接触表面的元素成分及分布情况,揭示石墨烯/高密度聚乙烯在水润滑条件下的摩擦磨损机理.结果 新型复合材料的拉伸强度、撕裂强度和肖氏硬度均随着石墨烯纳米片含量的增加而先增高后降低,1.5%石墨烯纳米片改性高密度聚乙烯表现出最高的强度,分别为19.81 MPa、31.34 MPa和92.6HSA.新型复合材料的平均摩擦系数和体积行程磨损率总体随着石墨烯含量的增加而减小,1.5%石墨烯纳米片改性的高密度聚乙烯平均摩擦系数和体积行程磨损率比纯高密度聚乙烯分别降低了53.6%和73.9%.Si3N4陶瓷球与1.5%、0.6%石墨烯纳米片改性高密度聚乙烯进行3600 s对磨试验,其磨损区域的碳元素质量分数分别约为3.5%和0.3%,表明含量较高的石墨烯纳米片有利于在微观界面形成石墨烯润滑层,从而降低摩擦系数.结论 石墨烯纳米片显著影响高密度聚乙烯的自润滑性能和耐磨损性能,适量的石墨烯纳米片促进了高密度聚乙烯磨损界面石墨烯润滑层的形成,降低摩擦系数和磨损量.该研究可为设计低摩擦、耐磨损的水润滑轴承复合材料提供参考.  相似文献   

17.
采用半固态-液态搅拌铸造法制备了Si C颗粒增强铝基复合材料。研究了Si C颗粒含量(质量分数分别为0、5%、10%、15%和20%)对铝基复合材料组织及力学性能的影响。结果显示:添加少量Si C颗粒时,Si C颗粒在基体中分散均匀;当Si C质量分数达到15%时,Si C颗粒团聚较严重。随着Si C颗粒含量的增加,复合材料的硬度和抗拉强度先升高后降低。原因是Si C颗粒的位错强化作用,使得铝基复合材料的力学性能得到提升。随着Si C颗粒含量的增加,与界面结合良好的含Mg相数量减少,并且Si C颗粒团聚严重,铝基复合材料的力学性能降低。  相似文献   

18.
采用溶胶-凝胶法制备氧化铝颗粒增强的钼基复合材料.测定了钼基体的显微硬度;用SEM,TEM及XRD分别对混合粉体与坯体进行了微观分析;用销盘式摩擦磨损试验机测定了复合材料的滑动磨损性能.结果表明:在复合粉体及其材料中,Al2O3作为分散相具有细化晶粒的作用,随氧化铝体积分数增加,钼基体显微硬度增加,复合材料摩擦系数缓慢降低,磨损量先增加后减少,一定程度上改善了材料的磨损性能.  相似文献   

19.
采用粉末冶金法制备Si颗粒增强铝基复合材料,在不同的载荷条件下进行干摩擦试验,研究增强相Si含量对材料摩擦性能的影响。结果表明,增强相Si的加入有效提高了复合材料的摩擦性能;随着Si含量的增加,摩擦因数和磨损量均先减小后增大,当Si含量达到12%时,其摩擦性能最好。通过SEM和EDX分析铝基复合材料磨损表面,其磨损机制主要为磨粒磨损和氧化磨损。  相似文献   

20.
利用摩擦磨损试验机(UMT-2)对铜基粉末冶金材料进行研究,得到不同对偶摩擦副、摩擦速度、压力对摩擦系数和磨损量(深度)的影响;利用白光干涉仪和扫描电镜观察磨痕,分析其磨损机理。结果表明,当材料硬度低于粉末冶金材料中基体组元硬度时不适合用作对偶摩擦副;摩擦副材料对磨损机理有显著影响,钢与铜基粉末冶金材料间磨损机理以磨粒磨损和疲劳磨损为主,陶瓷与铜基粉末冶金材料间摩擦会先在陶瓷表面形成氧化黏着层再进行摩擦;压力一定时,随速度增加,钢/陶瓷-铜基粉末冶金材料的摩擦系数呈下降趋势,磨损量(深度)呈上升趋势;速度一定时,随压力增加,钢-铜基粉末冶金材料摩擦副的摩擦系数降低,磨损量(深度)增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号