首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Iron molybdenum alloys were prepared for the molybdenum concentration range 0–50 at.% by the arc melting method. X-ray diffraction patterns show single BCC phase for the Mo concentration up to 18 at.% with the lattice constant increasing upon addition of Mo. Sample with 21 at.% of Mo looks like composed of many BCC phases differing by the lattice constant. Finally, sample with 50 at.% of Mo looks like being composed of two BCC phases with various lattice constants and some amount of the non-stoichiometric λ-phase having symmetry P63/mmc. Mössbauer data indicate random solutions up to 12 at.% of Mo with magnetic order at room temperature. Room temperature paramagnetic phase appears for the sample with 18 at.% of Mo and its content increases with the increasing concentration of Mo. Traces of magnetically ordered phase (at room temperature) are seen for the sample with 40 at.% of Mo. Sample with 50 at.% of Mo is paramagnetic at room temperature. Contributions to the hyperfine field and isomer shift on the iron nuclei have been determined as the function of the distance between iron nucleus and Mo impurity up to the third co-ordination shell within the single-phase random solution range. Mo atom as the nearest iron neighbor changes iron hyperfine field by −4.18 T, as the second neighbor makes change by −2.30 T and finally as the third neighbor changes the field by +0.51 T. Corresponding changes in the isomer shift are as follows: −0.033 mm/s, −0.005 mm/s and +0.003 mm/s. The average hyperfine field and the isomer shift decrease linearly versus Mo concentration at rates −0.383 T/at.% and −5.06 × 10−4 mm/(s at.%), respectively. Hence, addition of Mo increases the electron density on the iron nucleus at the rate +1.7 × 10−3 electron a.u.−3(at.%)−1.  相似文献   

2.
Hu  Qiang  Liu  Fu-chu  Fan  Qian-lu  Du  Hui  Liu  Gang  Wang  Guang-hua  Fan  Zi-tian  Liu  Xin-wang 《中国铸造》2018,15(4):253-262
Cast Cr Co Ni Alx(x=0-1.2) medium-entropy alloys(MEAs) were produced by arc melting and flip cast to investigate the alloying effect of Al addition on the microstructure, phase constituent and mechanical properties. The crystal structure changes from an initial face-centered cubic(FCC) to duplex FCC and body-centered cubic(BCC) and finally a single BCC with increasing Al content. In the duplex region, FCC and BCC phases form under a eutectic reaction in the interdendrite region. In the single BCC region, the dendrites transform to ordered B2 and disordered A2 BCC phases resulting from spinodal decomposition. Corresponding to their phase constituents, yield strength increases accompanied with an elongation reduction with increasing Al addition. A very interesting phenomenon of very weak ordered FCC(001) spots appearing in Al-0.4 alloy was observed, indicating a local ordering of FCC phase. The changes of fracture surfaces after the tensile deformation are also corresponding to the variations in mechanical properties.  相似文献   

3.
The effects of vanadium addition on the microstructural evolution and mechanical properties of AlCrFe2Ni2 high-entropy alloy (HEA) were investigated. The results showed that the AlCrFe2Ni2V0.2 HEA was composed of FCC phase, disordered BCC phase, and ordered BCC (B2) phase. With the increase in vanadium content, the formation of FCC phase was inhibited, and a transition from FCC phase to BCC phase occurred. The FCC phase disappeared completely when the value of x exceeds 0.4 in AlCrFe2Ni2Vx HEAs. Besides, the amplitude-modulated microstructure morphology transformed from a B2 phase matrix with dispersed BCC nano-phase into an alternating interconnected B2 and BCC phases. Vanadium element has the function of stabilizing BCC phase and B2 phase in AlCrFe2Ni2Vx alloys. The hardness of AlCrFe2Ni2Vx alloys increased from HV 332.4 to HV 590.7, while the yield strength increased from 765 to 1744.6 MPa with increasing vanadium content, which was mainly due to the decreasing content of FCC phase and the solid solution strengthening of vanadium element. At the same time, the compression ratio of the alloys decreased with the disappearance of the FCC phase. Among the alloys, the AlCrFe2Ni2V0.2 alloy possessed the most excellent comprehensive mechanical properties with yield strength, fracture strength, and compressive ratio 1231.1, 2861.9 MPa, and 44.5%, respectively.  相似文献   

4.
采用等离子弧在45钢基体上熔覆了CrCuFeNiTi高熵合金涂层,经X射线衍射分析涂层中的物相有BCC、FCC和Fe2Ti相,并对BCC、FCC和Fe2Ti相进行了成分测试,采用CASTEP中的虚拟晶体近似方法建立了BCC、FCC和Fe2Ti相的晶体结构模型,基于第一性原理计算了涂层中BCC、FCC和Fe2Ti相的晶格常数,并与涂层中BCC、FCC和Fe2Ti相的X射线测试结果进行了比较,另外计算了BCC和FCC相的弹性常数Cij、体积模量B、剪切模量G、杨氏模量E和泊松比ν。结果表明,涂层中BCC和FCC相以及Fe2Ti的晶格常数计算值与试验值的误差为0.43%~3.05%,BCC、FCC和Fe2Ti相的生成热均为负值且BCC和FCC相的弹性常数C11C12C44满足立方结构高熵合金的力学稳定性限制条件,可知BCC、FCC和Fe2Ti相是稳定的。另外由C12-C44>0,G/B<0.57,ν>0.26可知BCC和FCC相以金属键结合且呈现韧性的特征。  相似文献   

5.
A series of Al_xCrFe_2 Ni_2 Mo_(0.2) alloy consisting of FCC+BCC phases have been designed,and their as-cast microstructures and mechanical properties were also investigated with x ranging from 0.6 to 0.9.It was found that with the addition of Al element,the solidified structures changed from dendrite to columnar crystal then back to dendrite again.Moreover,the increased amount of BCC phase resulted in finer and more uniform microstructures of FCC [FeCrNi(Mo)] and BCC(Al-Ni)phases.Tensile yield strength and hardness of alloys showed a similar increasing trend as the volume fraction of BCC phase increased.Both strain hardening rate and strain hardening exponent were calculated to assess the tensile properties of the alloys.It was shown that A1_(0.6)CrFe_2 Ni_2 Mo_(0.2) exhibited the most excellent and comprehensive mechanical properties due to its high work hardening ability and stable strain hardening rate.The product of strength and elongation of Al_(0.6)CrFe_2 Ni_2 Mo_(0.2)reached up to 38.6 GPa%,which was higher than most of the reported as-cast high-entropy alloys.  相似文献   

6.
The microstructure evolution of AlCoCrFeNiTi_(0.5) alloy and AlCoCrFeNiCu alloy during heat treatment was systematically studied,to reveal the influence rules of chemical activity of adding element on the microstructure evolution of AlCoCrFeNi system.Owing to the negative mixing enthalpy with the constituent elements,Ti element was mainly dissolved in the Al-Nirich phases,and aggravated the lattice distortion of B2 phase.The structure variation of BCC phase by adding Ti inhibited the formation of FCC phase and enhanced the precipitation of σ phase during heat treatment.Owing to the positive mixing enthalpy with constituent elements,Cu element tended to be repelled to the ID region and formed metastable Cu-rich FCC1 phase which would transform into Cu-Al-Ni-rich FCC2 phase with increasing temperature.The addition of Cu inhibited the precipitation of σ phase during heat treatment.Adding Ti maintained the stable dendritic morphology,while adding Cu reduced the thermal stability of microstructure.Two dramatic morphology changes occurred at 1000~℃ and 1100~℃ in the AlCoCrFeNiCu alloy.The lattice distortion of phase in AlCoCrFeNiTi_(0.5) alloy was aggravated with increasing temperature up to 800~℃,then relaxed together with the dissolution of σ phase when temperature was above 900~℃.The variation in lattice distortion dominated the hardness of AlCoCrFeNiTi_(0.5) alloy.With increasing heating temperature,the increasing volume fraction of region with FCC structure due to the transformation between FCC phases,and the pronounced coarsening in microstructure due to the reduced thermal stability,resulted in the mainly decreasing trend in the hardness of AlCoCrFeNiCu alloy.  相似文献   

7.
WC颗粒对激光熔覆FeCoCrNiCu高熵合金涂层组织与硬度的影响   总被引:4,自引:0,他引:4  
采用CO2横流激光器制备添加WC颗粒的FeCoCrNiCu高熵合金涂层,研究WC含量对涂层的组织结构及硬度的影响.结果表明:不同WC含量的高熵合金涂层均由简单的面心立方结构(FCC)和体心立方结构(BCC)两相组成.随着WC含量的提高,涂层中FCC相含量不断减少,BCC相含量不断增加.WC颗粒在激光熔覆过程中发生溶解并完全溶入FCC相和BCC相中,并未引起复杂碳化物相的生成.不同WC含量的涂层均为树枝晶组织.激光熔覆过程中的快速凝固条件有利于抑制枝晶和枝晶间的成分偏聚.WC含量的提高使枝晶细化,硬度提高.  相似文献   

8.
采用机械合金化(MA)与放电等离子烧结(SPS)相结合的方法制备出FeCoNiCu0.4Al0.4高熵合金,研究不同热处理温度对合金显微组织与力学性能的影响规律。结果表明:机械合金化后,FeCoNiCu0.4Al0.4高熵合金形成了单相的FCC固溶体,经1100℃SPS烧结后的块体组织仍为单相FCC结构,其压缩屈服强度、塑性应变和显微硬度分别为1165.1 MPa、45.2%和356.9 HV。经过热处理后,合金组织中生成了新的BCC相,且BCC相的含量随热处理温度的升高先增多后减少,500、600和700℃热处理后BCC相的含量分别为7%、30%和21%(体积分数)。退火态FeCoNiCu0.4Al0.4高熵合金的屈服强度随热处理温度的升高先升高后降低。当BCC相含量增多时,材料的屈服强度和硬度相应地提高,而塑性却显著降低。  相似文献   

9.
The microstructure and compressive properties of AlCoCrCuFeNi high-entropy alloy aged at temperatures ranging from 500 to 1000 °C were investigated. The BCC and FCC phase structures remain unchanged after aging the AlCoCrCuFeNi alloy at temperatures below 645 °C. Aging the alloy at elevated temperature causes the structure gradually to transform from stabilized BCC to FCC. Also, as the aging temperature increases, the yield strength of the material decreases but plastic strain increases. When the alloy was aged at 1000 °C, the plastic strain even reaches 27%.  相似文献   

10.
研究Al含量和热处理对FeCoNiCrCu0.5Alx多主元高熵合金的相结构、硬度和电化学性能的影响规律。随着Al含量的增加,铸态合金的相结构由FCC相向BCC相转变。当x从0.5增加到1.5时,FeCoNiCrCu0.5Alx高熵合金的稳定结构由FCC结构向FCC+BCC双相结构转变。BCC相的硬度高于FCC相的,在氯离子及酸性介质中BCC相的耐腐蚀性均优于FCC相的。FeCoNiCrCu0.5Al1.0铸态合金具有高硬度和良好的抗腐蚀性能。  相似文献   

11.
F. Stein  M. Palm  G. Sauthoff 《Intermetallics》2005,13(12):1275-1285
Two-phase Fe-rich Fe–Al–Zr alloys have been prepared consisting of binary Fe–Al with a very low solubility for Zr and the ternary Laves phase Zr(Fe,Al)2 or τ1 phase Zr(Fe,Al)12. Yield stress, flexural fracture strain, and oxidation behaviour of these alloys have been studied in the temperature range between room temperature and 1200 °C. Both the Laves phase and the τ1 phase act as strengthening phases increasing significantly the yield stress as well as the brittle-to-ductile transition temperature. Alloys containing disordered A2+ ordered D03 Fe–Al show strongly increased yield stresses compared to alloys with only A2 or D03 Fe–Al. The binary and ternary alloys with about 40at.% Al and 0 or 0.8at.% Zr show the effect of vacancy hardening at low temperatures which can be eliminated by heat treatments at 400 °C. At higher Zr contents this effect is lost and instead an increase of low-temperature strength is observed after the heat treatment. The increase of the high-temperature yield strength of Fe-40at.% Al by adding Zr is much stronger than by other ternary additions such as Ti, Nb, or Mo. Tests on the oxidation resistance at temperatures up to 1200 °C indicate a detrimental effect of Zr already for additions of 0.1at.%.  相似文献   

12.
FeCoCrNiMn high-entropy alloys were produced by mechanical alloying (MA) and vacuum hot pressing sintering (VHPS). Results showed that the nano-crystalline alloy powders were obtained by MA and the corresponding phase structures were composed of FCC matrices and low amounts of BCC and amorphous phases. After VHPS, the BCC phases almost disappeared, simultaneously with the precipitation of σ phases and M23C6 carbides. An increase of sintering temperature resulted in grain growth of the precipitated phases. As the sintering temperature was increased from 700 to 1000 °C, the strain-to-failure of the alloys rose from 4.4% to 38.2%, whereas the yield strength decreased from 1682 to 774 MPa. The bulk FeCoCrNiMn HEAs, consolidated by VHPS at 800 °C and 900 °C for 1 h, showed relatively good combination of strength and ductility.  相似文献   

13.
Microstructure and mechanical properties of five Nb alloys containing 8 to 17 at.% Mo, 8 or 35 at.% Zr, up to 7 at.% Ti, up to 2 at.% Al and up to 2 at.% Cr are reported. These alloys have been developed to replace heavy, expensive and difficult to process commercial Nb alloys, such as C-3009, for use at temperatures up to 1600 °C. The density of the alloys is in the range from 7.6 to 8.6 g/cm3. The alloys have a BCC matrix phase, and they also contain small amounts of secondary phases, which are rich in Zr and have BCC, FCC, hexagonal or monoclinic crystal structures depending on the concentration of other alloying elements, including oxygen and nitrogen. In the temperature range from 25 °C to 1600 °C, the alloys with a smaller amount of Zr are ductile and have higher specific strength than C-3009. The alloy containing 35 at.% Zr is stronger, but less ductile, than other alloys at temperatures up to 600 °C; however, it loses the strength rapidly at higher temperatures and becomes softer than other alloys at T > 1000 °C. The possible strengthening mechanisms responsible for the observed temperature dependence of the yield stress of the alloys are also discussed.  相似文献   

14.
Studies on the oxidation behavior of high entropy alloys from the Al-Co-Cr-Cu-Fe-Ni metallic system were conducted. Three different high entropy alloys were synthesized using arc-melting method: AlCoCrFeNi, AlCoCrCu0.5FeNi and AlCoCrCuFeNi, with their crystal structures being respectively BCC, BCC and BCC + FCC. All alloys were oxidized in the air atmosphere at temperature of 1273 K for different time periods. Basing on the thermogravimetric result, the oxidation rate of the materials decreased with the increase of Cu content and the values of parabolic constants were on the level similar to those observed in Ni-Al intermetallic alloys. In all cases the oxide scale consisted of α-Al2O3, which exhibited poor adhesion to the surface during the cooling process, what was especially visible in alloys with Cu addition. In all oxidized samples a tendency towards formation of the Al-depleted FCC phase directly beneath the scale was observed. The phase constitution of all materials changed significantly during the oxidation process, with multiple new phases appearing in the system.  相似文献   

15.
MgxTi100−x (35 ≤ x ≤ 80) alloys with hexagonal close packed (HCP), face centered cubic (FCC) and body centered cubic (BCC) structures were successfully synthesized by means of ball milling. MgxTi100−x alloys with a BCC structure at x = 35 and 50 and with a HCP structure at x = 80 were synthesized by milling of Mg and Ti powder using stainless steel milling balls and pots. At x = 65, the BCC and HCP phases were synthesized. MgxTi100−x alloys with a FCC structure were synthesized at x = 35 and 50 by milling using zirconia milling balls and pots. The FCC and HCP phases were synthesized at x = 65 and 80 using zirconia milling balls and pots. The crystal structure of MgxTi100−x alloys synthesized by the ball milling method depended on the materials of milling balls and pots. That indicates that milling products are determined by the dynamic energy given by the milling setup. The lattice parameters of MgxTi100−x in the HCP, FCC and BCC phases increased with increase of the Mg content, x.  相似文献   

16.
BCC Heusler phase Ni2CoSi has been predicted to be a promising candidate to realize magnetic field induced martensitic transformation. We tried to prepare Ni2CoSi single phase using different methods. Single phase Ni2CoSi cannot be synthesized by arc-melting and annealing. Then we used mechanical alloying method to synthesize Ni2CoSi. But a FCC phase rather than BCC was obtained after ball-milling. The lattice constant of FCC Ni2CoSi is 3.52 Å and the Curie temperature is around 900 K. The saturation magnetization at 5 K is 2.44μB/f.u. This FCC phase is stable and no transition is observed when heating to 1173 K. The electronic structure and phase stability of the FCC and BCC Heusler phase have been investigated by first-principles calculations. The FCC Ni2CoSi has lower total energy compared with BCC, agreeing with the experimental observation. But the calculated total moment is much smaller than the Ms at 5 K. This difference is related to the atomic disorder and was discussed by KKR-CPA calculation.  相似文献   

17.
Crystal structures, microstructures and magnetic saturation of annealed pure W powder along with W-40 wt.% Ni powder mixtures processed by high-energy ball milling were investigated using XRD, DTA, SEM and saturation magnetization techniques. Thermally induced transformations occurred at low temperature annealing. Supersaturated metastable Ni(W) solid solution formed during mechanical milling decomposed during annealing treatment into FCC Ni-rich, FCC W-rich phases and an eta-type phase which was constituted of BCC lattice of W enveloped by two FCC lattices of Ni and W. The structures of the major annealing products were close to Ni10W and W3Ni2. The magnetic saturation of the milled W powder and W-Ni mixtures decreased with the increase in annealing temperature. Milling time was more influential on the magnetic properties of the annealed pure W powders.  相似文献   

18.
研究了快淬作用对Ti-28V-15Mn-10Cr合金的相结构和储氢性能的影响。XRD实验结果表明,快淬处理使得合金由BCC和C14Laves两相结构转变为单一的BCC相结构,同时合金的晶格常数随着快淬冷速的增加而增大。快淬作用能显著改善Ti-28V-15Mn-10Cr合金的吸放氢平台特性,从而导致合金放氢量的增加。然而,快淬处理也使得合金的放氢平台压下降以及活化性能变差。  相似文献   

19.
Starting from three typical equiatomic CoCrFeNiMn, CoCrFeNiAl and CoCrFeNiCu high entropy alloys (HEAs), we systematically investigated the compositional dependence of phase formation and mechanical properties of 78 alloys by varying the atomic ratio of the constituent elements. It was found that the simple phase structures, including a single face-centered cubic (FCC) or body-centered cubic (BCC) phase, duplex FCC phases, duplex BCC phases, instead of intermetallics, could form within a broad compositional landscape in 68 out of the 78 alloys not limited to the equiatomic composition where the configurational mixing entropy is maximum. This fact indicates that it may be the nature of the constituent elements that leads to simple phase structure formation. With compositional variation, the microstructure and mechanical properties including hardness and tensile properties show corresponding changes. It was found that the hardness variation of samples within the same structure is smaller for the FCC than that of the BCC. Tensile results indicated that the tensile elongation of (CoCrFeMn)(100−x)Nix (x = 0, 10 and 20) alloys increases with Ni addition due to the decreasing volume fraction of sigma phase. For the (CoCrFeAl)(100−x)Nix (x = 27.3, 33.3, 38.5, 42.9 and 50) alloys, the yield strength decreases and tensile elongation increases with Ni addition due to decreasing volume fraction of BCC phase which is hard yet brittle. The present results are important to understand the phase formation and relationship between microstructure and mechanical properties in HEAs.  相似文献   

20.
Microstructure and texture variations of a cold-rolled multiphase FeCrCuMnNi high-entropy alloy were studied after different annealing treatments. Samples were heat-treated at different temperatures and for different time, and then, subjected to different tests including XRD and SEM-EBSD. The results reveal that the FCC1 phase, which goes through more strain, has lower melting temperature, and recrystallizes earlier (lower temperature and shorter time). In addition, it is seen that particle stimulated nucleation is more effective on the recrystallization of this phase compared to FCC2 phase. A significant number of FCC1 nuclei form around the BCC particles. Nucleation of FCC2 phase initiated at 800 °C mostly at the grain boundaries and the inhomogeneities. The FCC1 phase was almost fully recrystallized at this temperature. The annealing process led to the elimination of rolling textures, while the Brass component remained a major component in the recrystallized samples. Increasing annealing temperature as well as annealing time led to the formation of Cube texture component, which is a major component of recrystallized low stacking fault energy materials. Furthermore, D and Rt-Co components formed during recrystallization as a result of the formation of annealing twins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号