首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
为了提高304LN不锈钢的耐磨性,延长控制棒导向筒组件使用寿命,采用激光熔覆技术在304LN不锈钢表面制备了Stellite 6钴基熔覆层.利用光学显微镜(OM)、能谱仪(EDS)、显微硬度计、摩擦磨损试验机、腐蚀试验装置等多种试验测试设备,分析了熔覆层组织形貌、成分、显微硬度、摩擦磨损性能及腐蚀行为,确定了多道多层钴基熔覆层的工艺参数.结果表明,熔覆层与基体之间形成了冶金结合,显微组织主要由平面晶区、胞状和柱状晶区、树枝晶区和等轴晶区组成.熔覆层硬度为500 ~ 550 HV,摩擦磨损系数为0.30 ~ 0.35,熔覆层均匀腐蚀速率和缝隙腐蚀速率分别为0.153 和0.143 mg/(dm2·d). 激光熔覆钴基合金可以有效提高304LN不锈钢表面的硬度、耐磨性能和耐腐蚀性能.  相似文献   

2.
WC增强Fe基合金熔覆层的组织与湿砂磨损特性   总被引:2,自引:1,他引:1       下载免费PDF全文
采用等离子熔覆方法在Q235钢基体上制备了WC增强Fe基合金熔覆层,研究了添加质量分数为10%~30%WC-Co对熔覆层的微观结构和湿砂磨损特性的影响。结果表明:大部分WC-Co在等离子熔覆过程中发生分解,WC-Co添加量为30%时,熔覆层主要由α-Fe固溶体、Fe6W6C、(Cr,Fe)23C6和WC相组成;熔覆层的显微组织形貌自界面结合处至涂层上部逐渐转变,即由平面晶变为树枝晶再转为胞状晶,α-Fe固溶体主要以树枝晶/胞状晶存在,而Fe6W6C、(Cr,Fe)23C6相则主要在枝晶间析出;熔覆层显微硬度均不小于800HV0.2,其湿砂磨损形式主要为磨粒磨损,且熔覆层显微硬度与抗湿砂磨损能力均随WC-Co添加量增加而增大,这主要与强化相(Fe6W6C、(Cr,Fe)23C6、WC)的含量以及固溶强化效果随WC-Co添加量增多而增大有关。  相似文献   

3.
1Cr18Ni9Ti 不锈钢表面电火花熔覆 WC 涂层特性研究   总被引:1,自引:0,他引:1  
目的研究1Cr18Ni9Ti不锈钢经电火花强化后,WC涂层的显微组织和性能。方法采用电火花熔覆技术在不锈钢1Cr18Ni9Ti基体表面制备WC熔覆层,并分析熔覆层的表面形貌、显微组织、显微硬度、耐磨性,采用线性极化法研究熔覆层在3.5%(质量分数)Na Cl腐蚀溶液中的耐腐蚀性能。结果熔覆层组织均匀、连续、致密,与基体呈冶金结合。显微硬度最大值达到1680HV0.3,平均值为1336HV0.3,比不锈钢基材提高了4倍,耐磨性是不锈钢基材的4倍。在3.5%Na Cl腐蚀溶液中,熔覆层的自腐蚀电位较不锈钢减小了约165 m V,击破电位低于不锈钢基材,维钝电流密度高于不锈钢基材。结论熔覆层具有高硬度和高耐磨性能,磨损机理主要是粘着磨损和磨粒磨损,但在3.5%Na Cl腐蚀体系中,耐腐蚀性能低于1Cr18Ni9Ti不锈钢。  相似文献   

4.
利用CO2激光热源在Inconel 600镍基合金基体上熔覆制备了纳米稀土Y2O3/Co-Cr-W系钴基合金涂层,并对涂层的组织及性能进行了分析。结果表明,Co基合金激光熔覆涂层由界面熔合区、柱状枝晶区及熔覆金属中心胞状区3个区域构成。稀土Y2O3/Co-Cr-W系钴基合金复合涂层距离表面2 mm左右显微硬度最高,为938.9 HV,而Inconel 600基体显微硬度只有362.0 HV。钴基合金涂层的耐磨性也大大高于基体组织,磨损40 min时磨损量为0.7 mg,只有基体组织的2.73%。  相似文献   

5.
采用2 k W半导体激光器在304不锈钢表面进行同轴送粉的激光熔覆Co基合金试验,以提升其表面性能,解决失效问题。通过光学显微镜、扫描电镜、X射线衍射仪研究了熔覆层的显微组织和相结构。采用显微硬度计、摩擦磨损试验机和气蚀装置测试了熔覆层的显微硬度、耐磨性与抗气蚀性。结果表明,Co基合金熔覆层组织均匀、致密,与基体结合良好,没有微观裂纹与气孔等缺陷。熔覆层组织主要由初生γ-Co枝晶固溶体及其间的共晶组织组成,其主要组成相为γ-Co、Fe Ni固溶体、Co Cx和Cr23C6等碳化物。熔覆层最高显微硬度为484 HV0.2,平均显微硬度为474 HV0.2,较基体提高2倍以上;熔覆层的平均摩擦系数和磨损量分别为基体的50.8%和29.2%;熔覆层的抗气蚀性能较基体提高了2.7倍。  相似文献   

6.
碳钢表面激光熔覆铁基B_4C陶瓷涂层的组织与性能   总被引:1,自引:1,他引:0  
利用5 kW横流连续CO2激光器,采用粉末预置法在Q235钢表面进行了激光熔覆铁基B4C陶瓷涂层的试验研究.通过试验,优化了工艺参数,深入分析了熔覆层的显微组织及相组成,测试了熔覆层显微硬度、耐磨损及耐腐蚀性能.结果表明,铁基B4C陶瓷复合涂层与基体达到良好的冶金结合,熔覆层组织主要是由短小柱状枝晶与细小的等轴晶组成,其组成相为α-Fe、Fe3C、Fe3(B,C)、Fe2B、CrB、Cr23C6等化合物,熔覆层中还发现未熔的B4C颗粒.与基体相比,熔覆层显微硬度显著提高,最高可达到1372 HV0.2,约为基体188 HV0.2的7倍;磨损实验表明,熔覆层与基体表面都出现了磨粒磨损特征的犁沟,熔覆层表面磨损的犁沟比基体浅且细密,熔覆层的耐磨性能显著提高.电化学测试结果也表明,熔覆层的耐腐蚀性能也得到了提高.  相似文献   

7.
铁基合金激光熔覆层裂纹控制的组织设计   总被引:3,自引:1,他引:2       下载免费PDF全文
通过对激光熔覆铁基合金进行组织设计和试验,获得了无裂纹、平均硬度为850.3 HV (65HRC)的熔覆涂层.利用光学显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)、X-射线衍射(XRD)对熔覆层进行显微组织、相结构分析,结果表明:熔覆层为枝/胞晶凝固组织形态,熔覆层内弥散分布大量的颗粒相;残余奥氏体沿着枝/胞晶间分布,晶间的碳化物呈颗粒状弥散分布在晶间残余奥氏体上.摩擦测试结果表明,熔覆层的磨损形式主要为磨粒磨损,对比材料冷轧辊用钢9Cr2Mo磨损形式为磨粒磨损、粘着磨损和疲劳剥落.熔覆层的拉伸断口形貌为准解理和韧窝,并有沿晶粒边界形成的韧带,表明晶界残余奥氏体提高了熔覆层的韧性.  相似文献   

8.
采用TJ-HL-5000横流CO2连续激光器在2738塑料模具钢表面制备了WxC/Ni基合金涂层.利用金相显微镜、SEM、EDS、XRD、显微硬度计以及摩擦磨损试验机等检测设备研究了激光熔覆涂层组织及性能.XRD分析结果表明,熔覆层的主要物相有γ-Ni、W2C、WC、M23C6(M=Cr,Ni,Mo,W)、NiCr和Cr2O3等.金相显微镜、SEM和EDS分析结果表明,结合区为良好冶金结合,结合区为FeNiCrW合金,厚度为20 μm左右;基体对熔覆层合金的稀释度很低;熔覆层从界面向外依次分布着平面晶区、细等轴晶区、粗树枝晶区以及表面细晶区.显微硬度计结果表明,熔覆层的硬度值平均约900 HV1,是基体硬度的2.8倍左右.摩擦磨损试验结果表明,与基体相比熔覆层的耐磨性有了很大提高.  相似文献   

9.
QT-500球墨铸铁表面激光熔覆镍基合金的组织与性能   总被引:1,自引:0,他引:1  
利用DL-T5000型二氧化碳激光器在QT-500球墨铸铁表面熔覆镍基合金,分析了激光熔覆层的显微组织,测试了其显微硬度及磨损性能。结果表明:所制得熔覆层组织致密、无裂纹,与基体形成了良好的冶金结合。从熔覆层表面到基体热影响区,组织依次为大量的树枝晶、等轴晶、树枝晶。熔覆层的硬度较基体提高了5倍,熔覆层的总磨损率大约为基体的1/6。熔覆层耐磨性能增强的主要原因是镍基合金与涂层元素镍、铬等固溶强化和碳化物等析出相的强化作用。  相似文献   

10.
利用5 kW横流CO2激光器,在304不锈钢表面激光熔覆原位生成Fe17Mn5Si10Cr4Ni记忆合金涂层并利用金相显微镜、场发射扫描电镜、X射线衍射仪、往复摩擦仪等仪器设备对熔覆层显微组织、微区成分、摩擦磨损性能进行了分析研究。结果表明,Fe-Mn-Si记忆合金涂层自顶端到熔合界面分别由等轴晶、树枝晶、柱状树枝晶、胞状晶和平面晶组成;激光熔覆原位生成Fe-Mn-Si记忆合金涂层过程中,熔覆层内残余应力驱动诱发了γ→ε马氏体相变,相变变形可松弛熔覆层的残余应力;Fe-Mn-Si记忆合金涂层与304不锈钢基材相比,摩擦系数小、耐磨性好,磨损机制为磨粒磨损,摩擦力诱发γ→ε马氏体相变是熔覆层耐磨性得到显著提升的根本原因。  相似文献   

11.
使用脉冲Nd:YAG激光器在Cr12MoV模具钢表面熔覆了Ni20Cr和Ni60A多层Ni基合金耐磨涂层,并使用X射线衍射仪、扫描电镜及能谱仪分析了涂层的物相和显微组织。同时运用显微维氏硬度计以及高速往复摩擦磨损试验机对比分析了涂层与基体的硬度及耐磨性。结果表明,采用Ni20Cr作为打底层的多层Ni基合金涂层,能有效改善涂层与基体的冶金结合,大大减少涂层中的裂纹、气孔等缺陷。涂层表面物相主要为g-(Fe, Ni)、FeNi3、BNi3、Cr3C2以及Ni-Cr-Fe;涂层底部至表面的组织为胞状树枝晶、柱状树枝晶、择优生长树枝晶以及等轴树枝晶。Ni60A涂层大大提高了Cr12MoV模具钢的表面硬度,涂层表面显微硬度最高可达到1000 HV0.2,是基体的1.6倍。Ni60A涂层耐磨损性能明显优于基体,较基体提高了2.0~3.3倍。在Cr12MoV模具钢表面激光熔覆多层Ni基合金涂层后,形成了Cr3C2、Ni-Cr-Fe等硬质相,可有效提高其表面的硬度和耐磨性,起到降低模具在使用过程中因摩擦磨损而报废的概率,从而进一步延长模具的使用寿命。  相似文献   

12.
目的用铬铁原矿粉快速直接制备高熵合金复合涂层,研究其组织结构及性能,提高基体表面硬度和耐磨性。方法采用激光熔覆技术在40Cr钢表面制备高熵合金复合涂层,运用金相显微镜(OM)、扫描电子显微镜(SEM)、X射线衍射仪(XRD)及硬度计、磨粒磨损机,分析高熵合金复合涂层不同深度的显微组织、物相结构及力学性能。结果高熵合金复合涂层与基体结合良好,物相结构为简单BCC结构的过饱和固溶体,显微组织为典型胞状和树枝晶组织,且原位自生形成的细小碳化物颗粒强化相弥散分布于基体。深度为0.1 mm时,复合涂层的显微组织形貌最细小,且存在一定程度的成分偏析。复合涂层显微硬度平均为6.48 GPa,为基材40Cr钢的2倍以上。高熵合金复合涂层不同深度的磨损率均低于基体的磨损率,且随着深度的增加,磨损率逐渐升高,当深度为0.1 mm时,磨损率最低,为0.17 mg/mm2,耐磨性最好。结论以铬铁原矿粉为掺杂组元,采用激光熔覆技术成功制备出掺杂原位自生颗粒强化相的高熵合金复合涂层,显著提高了基体表面硬度和耐磨性。  相似文献   

13.
利用冷喷涂辅助原位合成高熵合金涂层的方法,在45#钢基体表面成功制备出不同Co含量的FeCoxCrAlCu(x=0,0.5,1,1.5,2)高熵合金涂层。通过XRD、SEM、EDS、TEM、显微硬度计、磨料磨损试验机、电化学工作站等设备,检测分析了Co含量的变化对合金涂层相结构、显微组织,硬度、耐磨性及耐腐蚀性的影响。结果表明:合金涂层是由简单的FCC+BCC双相混合结构组成,Co含量的改变对涂层相组织的数量影响不大;随着Co含量的增加,合金涂层中显微组织的枝晶数目增加,并且得到明显粗化,通过面扫得显微组织中枝晶内富集Fe,Cr,Co元素,枝晶间富集Cu元素,Al均匀的分布在整个涂层中;随着Co含量的增加,硬度先增加后减小,在Co=1时合金涂层硬度达到最大为555.6HV;合金涂层中最小的摩擦系数为0.361;在3.5wt.%NaCl腐蚀介质中,合金涂层相比与45#钢基体具有较正的自腐蚀电位(Ecorr=-0.325V),说明涂层耐腐蚀性比基体好。  相似文献   

14.
李刚  刘囝  常雷明  李立轩  熊梓连 《表面技术》2021,50(2):271-276, 370
目的 以40Cr钢为基体,制备掺杂铬铁原矿粉的CrFeNiSiAl0.5高熵合金涂层,提高其硬度与耐磨性.方法 在Cr、Fe、Ni、Al、Si纯金属粉末中掺杂铬铁原矿粉,矿粉有效原子数分数为0%、5%、10%、15%时,采用激光熔覆技术,在40Cr钢基体上制备CrFeNiSiAl0.5高熵合金涂层.利用X射线衍射仪、金相显微镜、扫描电子显微镜,表征高熵合金涂层的物相结构及微观组织.利用硬度计、磨粒磨损机,对涂层的硬度及耐磨性能进行表征.结果 不含铬铁原矿粉时,高熵合金涂层为单一的BCC相,铬铁原矿粉为10%时,出现FCC相.高熵合金涂层微观组织以胞状树枝晶为主,涂层与结合区存在明显分界,与基体呈良好的冶金结合.不含铬铁原矿粉时,高熵合金涂层平均硬度值为643.5HV;铬铁原矿粉为15%时,涂层平均硬度值为838.1HV,是基体的3.4倍.磨损率随铬铁原矿粉占比的增加而降低,铬铁原矿粉有效原子数分数为15%时,磨损率约为0.14 mg/mm2,耐磨性能最好.结论 在40Cr钢基体上成功制备出了以铬铁原矿粉为掺杂组元的高熵合金涂层,铬铁原矿粉的掺入,提升了CrFeNiSiAl0.5高熵合金涂层的硬度与耐磨性.  相似文献   

15.
为了增强水泵过流部件表面抗气蚀、磨蚀的能力,采用电火花表面熔覆技术,结合独创螺旋往复式加工方法,在水泵叶轮常用材料1Cr18Ni9Ti表面制备了WC-8Co熔覆层。结合扫描电镜、显微硬度测量仪和摩擦磨损试验机分析了熔覆层的表面形貌、显微组织、显微硬度和耐磨性能。结果表明,熔覆层组织均匀、连续、致密,没有明显的裂纹和孔洞,熔覆层和基体材料没有明显的分界线,呈冶金结合;熔覆层的显微硬度HV0.3最大值达到18 920 MPa,平均硬度值为17 950 MPa,比水泵基体材料硬度(2600 MPa)提高了近6倍; 熔覆层的耐磨性是水泵基体材料的3.75倍,熔覆层的磨损机理主要是黏着磨损和磨粒磨损。  相似文献   

16.
采用激光熔覆技术在 304 不锈钢表层制备了纳米 TiC 增强 AlCoCrFeNi 高熵合金涂层,利用扫描电镜、能谱仪、X 射线衍射仪等设备系统研究了涂层的组织形貌、相结构及元素分布;采用显微硬度计、摩擦磨损仪、超景深显微镜和电化学工作站等设备表征了涂层的硬度分布、磨损特性及耐腐蚀性能。结果表明,类球形纳米级 TiC 与棒状微米级 TiC 沉淀相均匀分布在涂层 bcc(B2)相基体中。添加 TiC 增强相后,AlCoCrFeNi 高熵合金涂层的硬度比未添加 TiC 涂层的硬度提升了 15%;表层磨损率及磨损后表面单位面积粗糙度(Sa)分别较 AlCoCrFeNi 高熵合金涂层降低了 42% 和 18%,涂层中 TiC 增强相的弥散强化作用是涂层硬度、耐磨性提升的主要原因。添加 TiC 的 AlCoCrFeNi 高熵合金涂层较未添加 TiC 涂层的自腐蚀电流降低了约1个数量级,TiC 增强相使涂层表面形成致密的钝化膜是其耐蚀性能好的主要原因。  相似文献   

17.
为了提高奥氏体不锈钢的耐磨性能,扩大其应用范围,以Ti-C-Fe-Ni混合合金粉末为原料,利用等离子熔敷技术在1Cr18Ni9Ti奥氏体不锈钢表面原位合成了TiC增强耐磨复合涂层。分析了涂层的显微组织结构,测试了涂层沿层深方向的硬度分布,评价了涂层在室温干滑动磨损试验条件下的摩擦磨损性能,结果表明:等离子熔敷TiC金属陶瓷增强复合涂层显微组织细小均匀,由花瓣状和少量颗粒状TiC初生相均匀分布在TiC/γ-(Fe,Ni)共晶基体上组成,涂层与不锈钢基材之间形成了完全冶金结合,涂层平均显微硬度约790 HV,涂层在室温干滑动磨损试验条件下表现出良好的耐磨性及较低的摩擦系数。  相似文献   

18.
采用JHM-1GY-400型脉冲Nb∶YAG固体激光器和316L不锈钢粉末在20低碳钢表面制备了激光熔覆层。利用OM、XRD、SEM等表征方法分析了不锈钢熔覆层的物相组成和显微组织,并分别利用旋转摩擦试验机和电化学工作站对熔覆层和基材的耐磨损和耐腐蚀性进行了研究。试验结果表明,不锈钢熔覆层厚度约为50 μm,由γ相(奥氏体)和α相(铁素体)组成,其显微组织主要包括细小的树枝晶、粗大的胞状晶以及平面晶;不锈钢熔覆层表面硬度约为基材的2倍,摩擦因数比基材低0.0418,磨损量更低,不锈钢熔覆层比基材具有更高的耐磨性。与基材相比,不锈钢熔覆层具有更低的自腐蚀电流和更高的自腐蚀电位,其耐腐蚀性能更优异。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号